Feed additives to reduce methane-emissions from cattle

Rajan Dhakal₁, Benedikt Blossom₂, Malene Billeskov Keller₃, Einar Vargas Bello Perez₁, Hanne Helene Hansen₁

 University of Copenhagen, Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health
University of Copenhagen, Department of Geosciences and Natural Resource Management, Forest, Nature & Biomass
Denmark Technical University, Department of Biotechnology and Biomedicine

KØBENHAVNS UNIVERSITET

Background

- Ruminants harbors abundant diversity of microbiome in rumen
- Ruminants get around 75% of the energy through anaerobic fermentation in the rumen
- The rumen fermentation produce several gases (CO₂, H₂, CH₄), volatile fatty acids (mainly acetate, propionate and butyrate) and microbial protein
- Due to its impact on the productivity of the animal and the emission of greenhouse gases (GHGs), the importance of rumen ecosystem has raised concern in recent years

3

Direct-fed microbials and rumen methanogenesis

📍 KØBENHAVNS UNIVERSITET

- Targeting the methanogens.
- Shifting the fermentation to produce Propionate by shifting H₂.
- We are using feed additives to manipulate the rumen fermentation in order to get desire result

Figure 1 Rumen biochemical pathways that could be modulated by direct-fed microbials to decrease CH₄ production. 1. Methanogenesis, 2. homoacetogenesis, 3. sulphate reduction, 4. nitrate/nitrite reduction, 5. fumarate reduction, 6. propionate production (succinate/randomizing pathway), 7. propionate production (acrylate pathway) 8. capnophily (CO₂ fixation), 9. methane oxidation (methanotrophy).

Source: Jeyanathan, J., Martin, C., & Morgavi, D. (2014). The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.

Objective

 To study the effect of fiber breaking enzyme on dry matter degradability, total gas production, VFA and Methane of Maize silage (MS)

Basal Feed: Maize Silage (MS)

- Maize silage (MS)
- MS Incubated with Agent Y (A1)
- MS Incubated with Agent Z (A2) Positive Controls'
- Maize silage + Additive 3 (A3)
- Maize silage + Additive 4 (A4)
- Maize silage +Additive 5 (A5)
- MS+ Additive 6 (A6)

Methods

Methods

- Dry matter degradability (dDM), total gas production (TGP), methane, VFA and fiber composition was measured
- For all responses the following model was used to compare the means of the treatments.

Y = Treatment + (random=Fermentation run) + Error

• Significance declared p<0.05

Gas production during 48 hours in-vitro rumen fermentation

Hours

Dry matter degradability (dDM), total gas production(TGP) and methane (CH4%) after 48 hours in-vitro rumen fermentation

	MS	A1	A2	A3	A4	A5	A6
dDM	76.13	76.58	75.64	75.82	74.93	75.49	76.46
TGP (ml/g DM at	172.03	165.03	220 54	200 7 h		221 Obc	170 (3
51P at 48 h)	173.9ª	165.8°	238.5°	208.75	228.200	221.950	170.6ª
СН4%	10.0 ^{ab}	7.8 ª	9.0 ^{ab}	10.4 ^{ab}	11.4 ^b	10.8 ^{ab}	9.1 ^{ab}
CH4 ml/g DM	17.3 ^{ab}	13.8ª	21.0 ^{bc}	21.4 ^{bc}	26.5°	23.7°	16.2ªb

VFA (mMol/L) production after 48 hours in-vitro rumen fermentation

mMol/L	MS	A1	A2	A3	A4	А5	A6
Total	69.7ª	76.0 ^b	78.0 ^b	76.1 ^b	76.1 ^b	76.9 ^b	75.0 ^b
Acetic	<u>46.1ª</u>	52.2 ^{bc}	major	source of acetyl	CoA for synthesis o	of lipids 50.2bc	51.6 ^{bc}
Propionic	13.2ª	13.8 ^{ab}	16.5 ^{cd}	17.1 ^d	14.3 ^b	15.9 ^c	13.3 ^{ab}
Isobutyric	0.90	0.88	Propionate s	serves as a majo	r substrate for gluc	oneogenesis_91	0.89
Butyric	7.0 ^{ab}	6.7ª	7.9 ^c	6.8ª	7.7 ^c	7.3 ^b	6.7ª
Isovaleric	1.12 ^b	1.06ª	1.10 ^{ab}	1.12 ^b	1.13 ^b	1.14 ^b	1.08 ^{ab}
Valeric	1.14ª	1.13ª	1.27 ^c	1.19 ^b	1.19 ^b	1.2 ^b	1.13ª
Caproic	0.30 ^a	0.28ª	0.40 ^c	0.29 ^b	0.30 ^b	0.30 ^b	0.29 ^a

Conclusion

- We have one product that reduces methane by 20% compared to MS
- All additives increased the efficiency of the feed increase (VFA (minimum 7%))
- Using the fibre breaking enzyme in in-vitro stage has promising result and has future for the field study and one additive can be recommended for in-vivo studies.