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Preface 

 

‘Kongeåprojektet’ (the Kongeå-project) - aimed at establishing a cattle-industry-
based integrated research-project on veterinary and milk quality issues - was initiated 
in 1997. The project was established under the responsibility of Karsten Aagaard, The 
Veterinary and Milk Quality Department, Danish Dairy Board, with financial 
contributions from the dairy farmers and livestock production. Meanwhile, at the 
Cattle Health Laboratory (CHL) in Ladelund, a fellow was attending ELISA-plates, 
attempting to fill small wells with various liquids for known as well as for unknown 
purposes.  

In 1999 the Kongeå-project hired the first of a total of nine ph.d. students for the 
project – with partial funding from the Danish Research Academy. Meanwhile, at the 
CHL, one Viggo Bitsch tried to shape the fellow to do something beside filling and 
emptying the ELISA wells. The result thereof was enrolment of the fellow in a ph.d. 
project on the epidemiology of paratuberculosis. Ph.d. project planning commenced, 
supervised by Jens Frederik Agger and Peter Lind in collaboration with Anna Huda, 
Anna Bodil Christoffersen, Anne Kudahl, Bent Aalbæk, Carsten Enevoldsen, Kirstine 
Klitgaard Nielsen, Peter Ahrens, Steen Giese and Viggo Bitsch. The plans were 
carried out, samples were collected by practising veterinarians and the milk quality 
advisors Bent Jensen, Bent Truelsen, Jan Nelson, Lars Mortensen, Niels Sørensen. The 
samples were administrated primarily by Anne-Marie Sørensen assisted by Sanne 
Prüsse and Heidi Jørgensen at CHL. Anne-Marie skilfully made sure that the samples 
were registered so they could be found again. The collected milk and serum samples 
were analysed by Laila Rossen and Ulla Østerby, with prior handling assisted by most 
employees at CHL and supervised by Viggo Bitsch. The collected faecal samples were 
analysed by Ingerlise Christensen, Inga Filtenborg, Kirsten Bak, Sonja Kjær, Tina 
Iversen, Randi Carlsen and Rikke Jensen supervised by Anna-Bodil Christoffersen. 
Meanwhile, the fellow was fooling around in places where he would destroy as few 
things as possible for others. Among other things the fellow was enrolled in the 
Research School for Animal Production (RAPH) and participated in the fabulous 
activities of this research school joyfully lead by Pia Haubro Andersen. The fellow 
also went to, Cornell University, New York, where Yrjö Gröhn tried training the 
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fellow in marathonning, both the running-in-the-street version as well as marathonning 
with data. Ynte Schukken, Gerdien van Schaik, Richard Jacobson, Christine Rossiter 
and Susan Stehman (all Cornell University) contributed in the discussions on the data 
analysis. Julia Hertl (also from Cornell University) proofread this manuscript. 
Persistent Trans-Atlantic communication with Carsten Enevoldsen during the data 
marathonning also constituted a significant part of the data analysis. Parts of these data 
were retrieved and administrated from the Danish Cattle Database by Marianne 
Skovbogaard, who also edited whatever rubbish the fellow wrote into readable stuff 
for the newsletter “Kongeåprojektet”. Following the stay at Cornell, the fellow stayed 
home at the Department of Animal Science and Animal Health, KVL where the staff 
helped making everyday life pleasant. Once in a while he still aimlessly filled ELISA-
wells, but most of the time the fellow bartered Liza Nielsen, Hans Houe and Nils Toft 
with tall stories from real life while they tried to ask questions that could relate the 
fellow’s paratuberculosis-stuff to real life. When the fellow did not tell tall stories and 
did not purposelessly fill ELISA-wells, he wrote the stuff you have in your hands. 
Stine Jacobsen, who repeatedly uttered that he was the best ph.d.-student she knew, 
stimulated the process significantly by saying so even though she had no clue what he 
was doing in spite the fact that all the other people mentioned in the above actually did 
most of the job. The siblings of the fellow, Malene, Jakob and Peter, and the sire and 
dam of all these persons also stimulated the process of the present work.  

The fellow wishes to thank all of the mentioned persons for doing all the stuff 
mentioned, including all the help provided that is not mentioned. The fellow would 
also like to express his gratitude toward the involved organisations for funding the 
projects and thereby providing the basis of the study. The front page of this thesis may 
indicate that the fellow takes the entire credit for the thesis. However, it is really the 
result of the joint effort of all these persons. In reality they are the ones that should 
really be acknowledged. 
 
Frederiksberg, May 2002 

Søren Saxmose Nielsen 
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Summary 

 

Mycobacterium avium subsp. paratuberculosis is prevalent in the Danish dairy 

population. Presence of the organism can lead to clinical disease, which may result in 

production loss. The prevalence of paratuberculosis as a clinical entity is not known, 

nor is the prevalence of animals transmitting the infective agent to other cows. These 

might be among the most interesting prevalences, but paratuberculosis can be defined 

in many ways. However, ultimately the purpose of reporting should assume a 

definition of paratuberculosis that considered one of the following purposes: i) 

individual animal welfare; ii) production loss; and iii) transmission of infection. Other 

purposes would be assumed to be derivatives thereof.  

The laboratory tests used to detect M. avium subsp. paratuberculosis and 

infections with the bacteria generally suffer from a low sensitivity and specificity. 

Lack of sensitivity is primarily due to the chronic nature of paratuberculosis and 

possible latency of the infection. Lack of specificity is due to the widespread 

occurrence of bacteria with features very similar to M. avium subsp. paratuberculosis, 

including the immunogenecity of these bacteria. Correct quantification of the 

sensitivity and specificity are essential in calculations of the possibilities of predicting 

the efforts necessary to initiate an action against M. avium subsp. paratuberculosis. 

Subsequently, the diagnostic tests have to be cost-effective to serve their purpose. The 

sensitivity and specificity change with the stage of infection. Thus, purpose-related 

and disease stage interpretation of the diagnostic tests are necessary. 

The objective of this thesis is to give an epidemiological evaluation of the 

usefulness of the diagnostic information obtained from laboratories and to use the 

information to study the dynamics of the disease with description of cow types that can 

be applied in decision support systems and by farmers in control of the infection.  

Chapter 1 provides a general introduction into the history and historical 

definitions of paratuberculosis. A literature review of the occurrence of 

paratuberculosis, aetiology and immunology, pathogenesis and diagnostic possibilities 
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is given along with a more elaborate description of the hypothesis and objectives of the 

thesis. 

Chapter 2 describes evaluation of the diagnostic tests used in the thesis, namely 

enzyme-linked immunosorbent assays (ELISA) for detection of antibodies in milk and 

serum, and detection of M. avium subsp. paratuberculosis in faecal samples (faecal 

culture). First, an example of biased sampling, which would lead to overestimation of 

the sensitivity of the ELISA, is provided. This study also aims to determine the relative 

specificity of the antigen used in the ELISA. The antigen is from M. avium subsp. 

avium, but apparently it is as specific as a M. avium subsp. paratuberculosis antigen. 

Second, a study to determine the sensitivity and specificity of both ELISA and faecal 

culture is described based on cows from all likely stages of infection, including latent 

stages of disease. The linkage between sensitivity and specificity of ELISA and faecal 

culture is described and forms the basis for drawing attention to two cut-off points of 

the ELISA. One is where antibody level is high. High antibody level results in a high 

sensitivity of faecal culture. Low antibody level results in low sensitivity of faecal 

culture. The approach demonstrates the significance of choice of definition of 

paratuberculosis on the performance of the tests used.  

In a separate study, the variability of the ELISA is demonstrated and important 

variation points are demonstrated. Significant variation is recorded between ELISA-

plates and test-days. Thus, this information needs to be considered in further statistical 

analyses of the data described. 

In Chapter 3, the cow-time factors of importance in the ELISA interpretation are 

described. The ELISA results are more likely to be positive in 2nd and higher parities 

relative to 1st parity. For milk ELISA, results obtained from cows in mid-lactation are 

less likely to be positive than results obtained from cows at the beginning and the end 

of the lactation.  For serum ELISA, an almost inverted situation is present. These 

effects are studied further in cows from 7 herds known to be infected with 

paratuberculosis. Milk was collected continuously from these cows and the dynamics 

of the ELISA readings described for both cows with positive and negative faecal 

culture. Cow profiles were demonstrated and their shapes were not related to the faecal 
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culture group but to some other factors. The sensitivity of the ELISA could be 

increased 8% with repeated sampling. 

In Chapter 4, the results presented in the previous chapters are linked together 

and syntheses made including critical remarks and potential drawback of the studies 

the linkages. Theoretical static and dynamic cows are described based on the findings 

in Chapters 2 and 3. Four types are identified: a) Not infected; b) Infected, ‘controlling 

the infection’ (‘Inactive ParaTB’); c) Infected, initially ‘controlling’ the disease but 

loosing control at a sudden point in time (‘Active ParaTB’); and d) Infected, not 

‘controlling the infection’ (‘Active ParaTB’). The cow types are suggested to form the 

basis for cow definitions in the future control of paratuberculosis. These cow types can 

be included in a testing scheme, which also includes defining purpose prior to the 

testing.  

In Chapter 5, the main results are listed, and concluding remarks and perspectives 

are made.  
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Sammenfatning (Summary in Danish) 

Forekomsten af Mycobacterium avium subsp. paratuberculosis er hyppig i den 

danske malkekvægspopulation. Tilstedeværelsen af organismen kan medføre klinisk 

sygdom, herunder produktionstab. Prævalensen af klinisk paratuberkulose er ukendt 

ligesom forekomsten af smitteudskillende dyr ikke kendes med sikkerhed. Disse 

prævalenser er nok blandt de mest interessante, men paratuberkulose kan defineres på 

mange måder. I sidste ende er det dog normalt formålet med en given rapportering, der 

bør bestemme hvorledes man definerer paratuberkulose. Derfor vil de hyppigst 

anvendte formål nok falde indenfor en af følgende:  i) velfærd for det enkelte dyr;  ii) 

produktionstab; iii) spredning af infektionen. Andre formål må betragtes som derivater 

af disse. 

De laboratorietest, der normalt anvendes til påvisning af M. avium subsp. 

paratuberculosis og infektion med samme, har generelt lav sensitivitet og specificitet. 

Den manglende sensitivitet hænger primært sammen med sygdommens kroniske natur 

og forekomsten af latente infektioner. Manglende specificitet kan skyldes forekomsten 

af bakterier, der er nært beslægtet med M. avium subsp. paratuberculosis, og som 

derfor har mange fælles træk med denne, herunder en immunogenicitet, der ligner en 

del. Korrekt kvantificering af sensitivitet og specificitet er nødvendig for at bestemme 

de prædiktive evner af de anvendte test, når disse bruges i forskellige tiltag mod M. 

avium subsp. paratuberculosis. Desuden skal prisen på de anvendte test stå mål med 

effektiviteten af dem. Da sensitiviteten og specificiteten af de anvendte test ændres 

med sygdommens forskellige stadier, er formålsrettet og sygdomsstadie relateret 

tolkning af de diagnostiske test nødvendig. 

Formålet med denne afhandling er at give en epidemiologisk vurdering af 

anvendeligheden af den diagnostiske information, der kan indhentes fra laboratorietest 

og anvende denne information til at studere dynamikken af sygdommen med henblik 

på en beskrivelse af ko-typer, som kan anvendes i beslutningsstøttesystemer og af 

landmænd, når infektionen skal bringes under kontrol. 

Kapitel 1 giver en generel introduktion til sygdommens historie, herunder 

historiske definitioner af paratuberkulose. På basis af litteraturstudier opremses forhold 
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vedrørende forekomst, ætiologi, immunologi, patogenese og diagnostiske muligheder, 

mundende ud i en mere dybdegående beskrivelse af hypotese og formål med 

afhandlingen.  

Kapitel 2 beskriver evaluering af de diagnostiske test, der anvendes i studier i 

afhandlingen, nemlig enzyme-linked immunosorbent assay (ELISA) til bestemmelse 

af antistoffer i mælk og blod, og påvisning af M. avium subsp. paratuberculosis i 

gødningsprøver (bakteriologisk dyrkning). Indledningsvist bringes et eksempel på, 

hvorledes man kan opnå overestimering af sensitiviteten af ELISA ved ikke at 

udvælge en sine studie-objekter tilfældigt. Dette studie har også til formål at bestemme 

den relative specificitet af ELISA. Det anvendte antigen stammer fra M. avium subsp. 

avium, men det er tilsyneladende lige så specifikt som hvis et M. avium subsp. 

paratuberculosis antigen havde været anvendt. Efterfølgende blev der udført et studie, 

der havde til formål at bestemme sensitivitet og specificitet af både ELISA og 

bakteriologisk dyrkning hos køer fra alle stadier af paratuberkulose-infektion, 

inklusive dyr, der er i det latente sygdomsstadium. Koblingen mellem sensitivitet og 

specificitet mellem ELISA og bakteriologisk dyrkning beskrives og danner basis for 

anvendelse af to cut-off værdier i ELISAen. Den ene cut-off værdi er, hvor antistof-

niveauet er højt, og høje antistof-niveauer resulterer i høj sensitivitet af den 

bakteriologiske dyrkning.  Lave antistof-niveauer resulterer i lav sensitivitet af den 

bakteriologiske dyrkning. Fremgangsmåden demonstrerer betydningen af, hvilken 

definition af paratuberkulose man lægger til grund for evalueringen af testen.  

I et separat studium bestemmes bidraget fra forskellige komponenter af 

laboratorie-variation for ELISAen. Der er signifikant variation mellem ELISA-plader 

og test-dage. Derfor bør denne information inkluderes, når der foretages statistiske 

analyser af data, der oprinder fra ELISA-analyser. 

I kapitel 3 beskrives ko-tids-faktorer, der er vigtige i tolkningen af ELISA. 

Sandsynligheden for at være positiv i ELISA er mindst for 1. kalvskøer i forhold til 

øvrige køer. Mælke-ELISA resultater fra prøver udtaget af køer midt i laktationen er 

mindre sandsynlige at være positive end prøver udtager fra køer først eller sidst i 

laktationen. Serum-ELISA resultater viser et billede, der er næsten omvendt. Nogle af 
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disse effekter studeres nærmere hos køer fra 7 besætninger, der alle vides at have M. 

avium subsp. paratuberculosis i besætningen. Mælkeprøver indsamles gentagne gange 

fra disse køer, og dynamikken af ELISA-resultaterne beskrives for køer, for hvilken 

bakteriologisk dyrkning også er kendt. Køernes antistof-profiler beskrives, og deres 

form er ikke relateret til dyrknings-gruppe, men til andre faktorer. Sensitiviteten af 

ELISA stiger med 8% ved gentagen prøveindsamling. 

I kapitel 4 sammenkædes resultaterne fra de forrige kapitler og uddybende 

kritiske bemærkninger til sammenkædningen angives, inkluderende en diskusion af de 

potentielle bias som sammenfatning kunne føre til. Der beskrives statiske og 

dynamiske antistof-profiler for køer baseret på fundene i kapitlerne 2 og 3. Fire ko-

typer beskrives: a) Ikke-inficeret; b) Inficeret med ’kontrol’ over infektionen (’Inaktiv 

ParaTB’); c) Inficeret, indledningsvist med ’kontrol’ over infektionen, men hvor denne 

kontrol mistes på et givent tidspunkt (’Aktiv ParaTB’); og d) Inficeret, uden ’kontrol’ 

med infektionen (’Aktiv ParaTB’). Ko-typerne foreslås at danne basis for definition af 

ko-typer i et fremtidigt paratuberkulose kontrolprogram i Danmark. Ko-typerne kan 

inkluderes i et testnings-system, som også skal inkludere en definition af formålet med 

at teste en ko.  

I kapitel 5 præsenteres hovedresultater og konklusioner og perspektiver oplistes. 
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Chapter 1.  General introduction 

 

Introduction 

‘Paratuberculosis is a chronic granulomatous gastrointestinal disorder of 

ruminants. The causative agent is Mycobacterium avium subsp. paratuberculosis’. 

This phrasing could be a general introduction to a scientific report on paratuberculosis 

and the definition would gain general acceptance from most pathologists and 

clinicians. However, the applicability of this definition from a disease prevention point 

of view is in some terms unfortunate. What is paratuberculosis? – and how should it be 

defined? 

 

History and historical definition 

In the 20th century, the main part of the history of paratuberculosis was formed 

and described (Chiodini, 1993). The disease entity gained the nowadays most common 

names Johne’s disease (named by McFadyen (1906)) and paratuberculosis (named by 

Bang (1906)). The disease gained these names following the pathological description 

(Johne and Frothingham, 1895) and the induction of experimental disease in calves fed 

infected intestine from infected cows (Bang, 1906). These descriptions have set the 

standards of what is considered paratuberculosis at the entry to the 21st century. 

However, as early as 1807, a disease entity called “Consumption” or “Wasting” 

(Skellet, 1811) with some clinical features similar to that of “clinical 

paratuberculosis”1 was described. And subsequently, a number of descriptions from 

clinical practice were reported in the first half of the 19th century (Cartwright, 1829; 

1831). None of these cases will probably ever be recorded as “true paratuberculosis 

cases”. Were they the result of infection with M. avium subsp. paratuberculosis? And 

should they have been classified as paratuberculosis when the diagnosis could not be 

confirmed? The veterinarian in the 19th century would have to base his diagnosis and 
                                                 
1 “Clinical disease” here used according to Whitlock and Buergelt (1996): “…. gradual weight loss despite a 
normal or, occasionally, an increased appetite. During a period of several weeks, concurrent with the weight loss, 
the manure consistency becomes more fluid. The diarrhea may be intermittent at first, with periods of normal 
manure consistency…….As the  disease progresses, the affected animals become increasingly lethargic, weak, 
and emaciated……” 
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treatment on the clinical findings because the disease was not defined. Since Johne and 

Frothingham described the disease and Bang induced it experimentally, the definitive 

diagnosis could potentially be established. However, a definitive diagnosis can only be 

established in some cases most often as a definitive positive diagnosis when 

pathological lesions and the bacteria have been identified. Because paratuberculosis 

can appear as a latent infection (Whitlock and Buergelt, 1996) some cows will be 

designated “non-paratuberculosis” by use of a definitive diagnostic system. Rather 

than a diagnosis based on clinical findings or a diagnosis based on a definitive test, a 

system that can comprise more types of paratuberculosis would seem desirable. This 

system could incorporate a probability diagnosis. Normally, the latent infections 

cannot be detected with 100% certainty by use of the available tests. Therefore, the use 

of a probability diagnosis would usually be the outcome when testing these animals. 

However, a characterisation of the dynamics of the infection in naturally infected cows 

would be necessary to provide a probable probability diagnosis. And definitions that 

concur with the events in the diagnostic tests are therefore desirable. To date, these 

definitions have comprised terms like “silent”, “latent”, “subclinical”, “clinical”, “with 

pathological findings consistent with paratuberculosis” etc. Such terms are not 

necessarily concordant with the desires of a control program to prevent future disease. 

A set of definitions where the diagnostic tests and the legal measures are in agreement 

would therefore be necessary in preventive veterinary medicine. 

 

Occurrence and significance 

Paratuberculosis is fairly prevalent in most Western European countries with 

reported prevalences up to more than 50% of the herds in The Netherlands and a few 

percent of the individuals in various countries (Kennedy and Benedictus, 2001). 

However, different methods of estimating the prevalence in different countries make 

inter-country comparison difficult.   

The prevalence and incidence of paratuberculosis in the Danish cattle industry is 

not known with certainty. To estimate the prevalence, a strict definition of 

‘paratuberculosis’ is needed and a precise test to detect these animals is also needed. 
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Any prevalence estimate will depend on the acceptance of a number of assumptions 

most of which are related to the chronicity of the disease. Because neither a strict 

definition nor a perfect test exists, true prevalence estimates are therefore difficult to 

obtain. Estimates of the incidence are even more difficult to obtain because of lack of 

knowledge of the incubation period. Usually, infection is assumed to take place in 

early calfhood, but this assumption is also difficult to validate.  

In 1998, a study was carried out to estimate the herd-level prevalence in 

Denmark. In total, 48% of the herds included in the study had evidence of 

paratuberculosis infection and huge regional differences were reported (Nielsen et al., 

2000). Calculated “true” prevalences were estimated between 0 and 91% depending on 

the region of sampling. In 1999, a similar study was carried out comprising 2709 herds 

in Southern Jutland, South Jutland and Western Jutland indicating that 75-90% of 

those herds were infected (unpublished data). These estimates were all based on the 

assumption that either a herd was infected or it was not. Any “latent” paratuberculosis 

infection would potentially be enough to give a positive status to a given herd. 

Estimates of individual-level prevalence depend on the definition of paratuberculosis. 

Because the current definitions of paratuberculosis are not consistent with the results 

obtained from the available diagnostic tests and the diagnostic tests are evaluated 

based on other definitions of “paratuberculosis animals”, estimates of individual-level 

prevalence are even harder to obtain than herd-level estimates. Estimates on the cow-

prevalence in a dairy region using such traditional methods suggested that 5% of the 

cows were infected – based on an apparent prevalence of 11% (Nielsen and Agger, 

2000). However, these prevalence estimates must be considered biased because 

potentially faulty assumptions have been used. 

 

Aetiology 

The aetiological agent of paratuberculosis is M. avium subsp. paratuberculosis, 

previously named M. paratuberculosis. Two other M. avium subspecies currently 

exist: M. avium subsp. avium and M. avium subsp. silvaticum (Thorel et al., 1990). For 

differentiation of M. avium subsp. paratuberculosis from the two others, detection of 
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the specific insertion sequence IS900 by molecular techniques currently is the only 

option (McFadden et al., 1987a; 1987b; Green et al., 1989; Collins et al., 1990). 

Therefore, detection of this element by polymerase chain reaction is considered to be 

the definitive test for the identification of this organism. The other two M. avium 

subspecies also appear to have one or two unique sequences (IS901 and IS902) 

although these are not always present (Kunze et al., 1991; Moss et al., 1992). The use 

of the M. avium subsp. paratuberculosis “unique” IS900 identifier to assure specific 

tests may not be as unequivocal as first thought. IS900-like sequences have been 

demonstrated in two strains of M. avium that was not M. avium subsp. 

paratuberculosis strains isolated from clinically normal animals (Cousins et al., 1999). 

Thus, 100% specific identification seems difficult.  

 

Immunology and pathogenesis  

Infection with M. avium subsp. paratuberculosis is usually through oral uptake of 

faecal contaminated feed or raw milk in which the bacteria have been shed. In utero 

transmission is also a possibility (Seitz et al., 1989; Sweeney et al., 1992b). M. avium 

subsp. paratuberculosis is an obligate intracellular bacterium, hence cell-mediated 

immunity is the primary immunological response. How the bacteria enter intestinal 

tissues is still not fully elucidated but the following mechanism has been suggested: In 

the ileum, M-cells take up the bacteria, which are subsequently transferred to sub- and 

intraepithelial macrophages (Momotani et al., 1988). With the phagocytosis of the 

mycobacteria by macrophages, the immunological reaction has commenced. The 

macrophages are activated and a series of events can potentially occur, many of which 

are not fully described and understood. However, one of the two main immunological 

responses occurs: the cell-mediated TH1-lymphocyte dominated reaction or the 

humoral TH2-lymphocyte dominated reaction (Mosmann and Coffman, 1989; Waters, 

2001). Briefly, the TH1-lymphocyte response induces a cell-mediated immune-

response with production of, among other cytokines, interleukin-12 (IL-12) and 

interferon-γ (IFN-γ). This cell-mediated response is characterised by activation of 

macrophages. While TH1-lymphocytes are produced, differentiation of CD4+ 
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lymphocytes into TH2 cells is being suppressed. This suppression is mediated by the 

specific cytokines, e.g. IFN-γ. If the suppression is lifted, TH2-lymphocytes will 

induce a humoral immune response. The humoral immune response is characterised by 

B-lymphocyte activation and production of immunoglobulins (antibody production). 

The differentiation into TH2-lymphocytes is mediated by the cytokines IL-4, IL-6 and 

IL-10. These cytokines suppress TH1-lymphocytes. Thus, in general the response will 

be dominated either by TH1- or TH2- lymphocytes. The TH1-dependent macrophage 

activation is necessary for an effective elimination of the intracellular mycobacteria to 

take place since these are not available for the antibodies produced during the TH2-

dominated response. The mycobacteria also have a special capability of avoiding 

CD8+ T-cells (killer T-cells), because the mycobacteria are able to “hide” within the 

macrophages. Thus, degradation by cytotoxic CD8+ T-cells does not necessarily occur.  

The two types of immune reactions are essentially in an equilibrium in which the 

factors determining dominance are not quite understood. The equilibrium will be 

shifted towards either one or the other type of immune response. Initially, the cell-

mediated immune reaction dominates and the immune system is able to control the 

infection. Effective immunity to intracellular bacterial infection often requires the lysis 

of the infected cells as well as killing of the invading pathogen. Whether total 

elimination of the causative agent is possible in M. avium subsp. paratuberculosis 

infections is unknown and knowledge of the mechanisms of killing are mostly based 

on murine studies on M. tuberculosis (e.g. Schorey et al., 1997; Stenger et al. 1998). 

However, during the cell-mediated immune response, the number of M. avium subsp. 

paratuberculosis is, if not eliminated, kept at a low level in the infected animal. 

Evidence of a cell-mediated immune response can be measured through detection of 

lymphokines secreted from TH1-cells, e.g. IFN-γ and IL-1. TH1-cells also help B-

lymphocytes in the production of IgM, IgA, IgG2 and small amounts of IgG1. During 

the cell-mediated immunological reactions the humoral response with production of 

antibodies is depressed, but the infection is still ongoing (Bendixen, 1977; Chiodini, 

1996). Presence of CD8+ T-cells appears to block the signal from γδ+-T-cells to 

upgrade the CD4+-TH2-population, which should otherwise lead to the production of 
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large amounts of antibodies (Chiodini and Davis 1992; 1993). Transition to the TH2-

dominated humoral immune reaction may occur at a certain time. The basis for these 

transitions is still speculative, but one suggested mechanism is the dominance of γδ+-

T-lymphocytes in calfhood as these T-cells together with CD8+ T-cells are responsible 

for the proliferation of peripheral blood mononuclear cells in response to 

paratuberculosis antigens (Chiodini and Davis, 1992; 1993). This dominance in 

calfhood would explain the latency of infection in calves. In humans with M. 

tuberculosis-infections, genetic diversity of IFN-γ-receptors has been implicated in 

differences in the control of the immune responses (Altare et al., 1998).  

Emergence of the immune response to paratuberculosis has been described most 

often in experimental infections. The immune response in natural infections, with all 

possible infection stages, apparently has not been described thoroughly. However, the 

timing of disease events in natural settings is pivotal in inference drawing on many 

aspects of a chronic disease. Therefore, the dynamics known from experimental 

studies may serve as a starting point. Here, studies indicate that cellular immunity may 

be detected 1-2 months after infection whereas the humoral immune function 

potentially can occur 10-17 months after infection (Lepper et al., 1989).  

During the cell-mediated immune reaction, tuberculoid granulomas are formed in 

the infected tissues (mainly ileum). These granulomas are dominated by macrophages 

packed with mycobacteria. Later, with the TH2-lymphocyte dominance, lepromatoes 

granulomas are seen. The granulomas are characterised by higher numbers of 

mycobacteria in the macrophages constituting the granulomas (Clarke, 1997). The 

severity of the pathological changes seems to be consistent with the high numbers of 

mycobacteria in the macrophages (Buergelt et al., 1978) but cows can also experience 

clinical disease following development of tuberculoid granulomas (Clarke, 1997). 

Data on the epidemiological distribution of pathological changes and their correlation 

with clinical findings and the immune responses are sparse and most often, severe 

cases of paratuberculosis dominate the literature. The events leading to the shift from 

the TH1- to the TH2-lymphocyte dominance are unknown. The dynamics of the shift in 

the equilibrium are also unknown as is the reversibility of the immune response though 
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it is generally thought that once TH2-dominance has occurred, the reaction apparently 

does not reverse again (Waters et al., 2001) because effective immunity is induced by 

TH1-dominance only (Chiodini, 1996). The timing of the shift is not known either. 

Whether a fixed period from infection to TH1-dominance to TH2-dominance is present 

is not known. Nevertheless, it is often assumed that TH1-responses can be detected in 

calfhood shortly (i.e. a few months) after infection and TH2-responses can be detected 

in adulthood with a fixed likelihood of a diagnosis no matter how old the animal is (if 

just being a cow2), but currently available literature does not suggest fixed timing of 

these events (Lepper et al., 1989; McDonald et al., 1999). Also, the theory of a fixed 

incubation time for paratuberculosis is in many instances self-contradictory. This is 

due to the chronic nature of the disease, possible latency of infection, and, though 

usually assumed to be in calf hood, the unknown time of infection. Thus, the dynamics 

of the infection in a natural setting covering all potential stages of infection and 

disease have yet to be described relative to the routinely applied diagnostic tools.  

 

Diagnosis of paratuberculosis 

Diagnosis of paratuberculosis follows the patterns of pathogenesis. Two main 

diagnostic patterns can be followed: techniques that detect the agent and techniques 

that detect the immune responses (reviewed in Nielsen et al., 2001). Isolation of M. 

avium subsp. paratuberculosis by traditional culturing from faeces can take 2 to 4 

months (Whipple et al., 1991). Faster techniques have been developed (Cousins et al., 

1995; Grant et al., 1998; Whittington et al., 1999) but these are still labour-intensive 

and require that excretion of the bacteria takes place at the time of sampling. Detection 

of an immune response could be performed by detection of antibodies e.g. using 

enzyme-linked immunosorbent assays (ELISA) or similar techniques. Alternatively, 

newer methods such as detection of IFN-γ are options. However, prior to detection of 

the immune response, the reactions have to have occurred. Because paratuberculosis is 

chronic and the time of infection usually is unknown, a major obstacle in obtaining a 

correct diagnosis is time. The analytical sensitivity of the test applied is another 
                                                 
2 Cow is defined here as an animal that has had her first calf 
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obstacle. According to the pathogenesis, correlation of bacterial load and immune 

responses is time-dependent. Because the dynamic of the immune responses and the 

dynamic of the bacterial load and potential shedding do not necessarily follow the 

same pattern or time course, evaluation of the analytical sensitivity is difficult as the 

sample material often is defined based on some gold standard of infection such as 

detection of bacteria. Actually, considering the pathogenesis, the amount of analytes 

(the things being measured, e.g. bacteria or antibodies) differs with stage of infection. 

Some infections may never end with disease or losses to the farmer to a degree that it 

may be worth considering. Some diagnostic tests may therefore be adjusted in 

analytical sensitivity to ignore such reactions in order to maintain a reasonable 

specificity. 

The analytical specificity is another issue that has to be considered. Cross-

reactions to other mycobacterial infections are possible, either because the 

mycobacteria detected are not M. avium subsp. paratuberculosis or because the 

immune responses detected are caused by antigenic stimulation of non-M. avium 

subsp. paratuberculosis-like antigens. The degree of the false-positive reactions due to 

such cross-reactions is difficult to evaluate because neither the analytical sensitivity 

nor the analytical specificity can be fixed in a study. When the sensitivity is increased, 

the specificity will decrease.  

 

Objectives of the present work 

The diagnosis “paratuberculosis” depends on how paratuberculosis is defined. 

Paratuberculosis is defined based on the purposes of the diagnosis. Ultimately, 

important consequences to paratuberculosis infection in a herd are: 

– negative influences on the individual animal ultimately decreasing the welfare 

of the animal (due to diarrhoea, emaciation etc.), 

– production loss affecting the farmers economy, 

– expenditures to treatment and prevention, 

– transmission to other susceptible animals. 
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Thus, tests that can be used as proxies to establish the likely occurrence of these 

consequences are desired. Mathematics can be used to determine such probabilities. 

However, the purpose of the testing needs to be defined to provide a correct use of the 

mathematical figures emerging. Averaging the test performance for all purposes may 

result in in-efficient use of the tests. An example of hereof is provided by the 

recommendations of the National Johne’s Working Group (NJWG)/ United States 

Animal Health Association (USAHA) (Anon., 2002a). The NJWG/USAHA base their 

test evaluation upon one definition of paratuberculosis. Subsequently, the test 

evaluations are extended to comprise all paratuberculosis definitions and all purposes. 

However, the test evaluation is only valid for a narrow disease definition. 

To avoid possible misinterpretations, a statement of the purpose of a diagnosis is 

a requirement prior to concluding on a diagnosis. Also, separate test evaluations for 

separate definitions of paratuberculosis are required. However, because 

paratuberculosis is a chronic disease and no definitive tests exist to provide a final 

diagnosis for all purposes, an alternative would be desirable. The hypothesis of the 

present thesis is: 

’Purposive interpretation of diagnostic information from diagnostic tests for 

various definitions of paratuberculosis can increase the value of the traditional 

tests, antibody ELISA and faecal culture.’  

The purposes of the thesis are to give an epidemiological evaluation of the 

usefulness of the diagnostic information obtained from laboratories and use the 

information to study occurrence and dynamics of paratuberculosis in dairy cattle. New 

definitions of paratuberculosis will be suggested to provide for “cow-types” that can 

be used in decision support systems to facilitate decisions on actions for farmers and 

other decision makers, depending on their purpose with the diagnosis 

‘paratuberculosis’. 
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Chapter 2.  Evaluation of diagnostic tests 

 

Introduction 

The aim of Chapter 2 is to introduce and evaluate the diagnostic tests used in the 

thesis. The chapter consists of three manuscripts. Paper I is included to provide an 

example where the “consequence” of paratuberculosis could pertain to transmission 

since the reference test detects bacteria in faecal samples. With a biased sampling 

method, an apparently superior accuracy of the test can be obtained. The cows studied 

cannot be considered representative of all cows infected with M. avium subsp. 

paratuberculosis. Paper II deals with the problem of defining study objects without 

this bias, namely through use of no-gold standard methods for evaluation of diseases 

that have stages of latency (Enøe et al., 2000). Here, ELISA and faecal culture are 

evaluated simultaneously without putting more weighting on one or the other. With the 

simultaneous evaluations it is also possible to show point estimates of the performance 

of the faecal culture when there is a shift in the level of antibodies. This can be 

extended further to drawing inferences from the faecal culture test on populations 

based on their antibody level.  

In paper III the variability of the ELISA is given to demonstrate important 

components of variability and the need to control these in other studies. The paper 

serves more as a technical documentation for other papers rather than as an 

independent scientific contribution on inferences of laboratory tests from a veterinary 

point of view.  

Integration of the knowledge obtained from the papers is done in Chapter 4 and will 

not be dealt with further with in this chapter except for what is said in the specific 

papers. 

 



 

 26 



Due to restrictions from the publishers of the journals in which paper 1, 2 and 5 have been 
published, these papers are not present in this PDF. The papers can be found in: 
 
Paper 1: 
Nielsen, S. S., Houe, H., Thamsborg, S. M., & Bitsch, V. (2001). Comparison of two enzyme-
linked immunosorbent assays for serologic diagnosis of paratuberculosis (Johne's disease) in cattle 
using different subspecies strains of Mycobacterium avium. Journal of Veterinary Diagnostic 
Investigation, 13, 164-166. 
http://jvdi.org/cgi/content/abstract/13/2/164 
 
Paper 2: 
Nielsen, S. S., Grønbæk, C., Agger, J. F., & Houe, H. (2002). Maximum-likelihood estimation of 
sensitivity and specificity of ELISAs and faecal culture for diagnosis of paratuberculosis. 
Preventive Veterinary Medicine, 53, 191-204. 
DOI: 10.1016/S0167-5877(01)00280-X 
 
Paper 5: 
Nielsen, S. S., Grohn, Y. T., & Enevoldsen, C. (2002). Variation of the Milk Antibody Response to 
Paratuberculosis in Naturally Infected Dairy Cows. Journal of Dairy Science, 85, 2795-2802. 
http://jds.fass.org/cgi/content/abstract/85/11/2795 



 

 27

PAPER I 

 

 

 

 

 

Comparison of two enzyme-linked immunosorbent assays for 

serological diagnosis of paratuberculosis (Johne's disease) in cattle 

using different subspecies strains of Mycobacterium avium 

 

S.S. Nielsen, H. Houe, S.M. Thamsborg, V. Bitsch 

 

Journal of Veterinary Diagnostic Investigation, 2001, 13, 164-166. 



 

 28 

 



 

 37

Paper II 
 

 

 

 

Maximum-likelihood estimation of sensitivity and specificity of 

ELISAs and faecal culture for diagnosis of paratuberculosis 

 

S.S. Nielsen, C. Grønbæk, J.F. Agger, H. Houe 

 

Preventive Veterinary Medicine, 2002, 53, 191-204 



 

 38 

 



 

 53

Paper III 
 

 

 

 

 

Variance Components of an Enzyme-linked Immunosorbent Assay 

for Detection of IgG Antibodies in Milk Samples to Mycobacterium 

avium subspecies paratuberculosis in Dairy Cattle 

 

S.S. Nielsen 

 

Submitted to Journal of Veterinary Medicine, series B 



 

 54 

 



 

 55

Variance Components of an Enzyme-linked Immunosorbent Assay for 

Detection of IgG Antibodies in Milk Samples to Mycobacterium avium 

subspecies paratuberculosis in Dairy Cattle 
 

S. S. NIELSEN 

 

Address of author: Department of Animal Science and Animal Health, The Royal 

Veterinary and Agricultural University, Grønnegårdsvej 8, DK-1870 Frederiksberg C, 

Denmark.  

E-mail: ssn@kvl.dk 

 

With 1 figure and 1 table 

 

 

 

Summary 

 Milk samples from 120 cows were tested up to 10 times in an enzyme-linked 

immunosorbent assay (ELISA) for detection of antibodies to Mycobacterium avium 

subsp. paratuberculosis. The purpose of the study was to estimate variance 

components of the assay attributable to laboratory factors using mixed model theory. 

Because of significant interaction between the between-run, between-day and 

between-plate variables, the ELISA-plate variable was nested in run-number and run-

number was nested in day-number. The nested variable accounted for 72% of the 

laboratory variability (p=0.0025), whereas the intra-plate variability accounted for 

only 0.05% of the laboratory variability (p=0.36). Therefore, it was concluded, that the 

intra-plate variability could be ignored whereas the variability from the combined run-

day-plate variable should be considered in any analyses based on the ELISA. 
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Introduction 

Paratuberculosis is a chronic infection caused by Mycobacterium avium subsp. 

paratuberculosis (Map) (Chiodini et al., 1984). The infection has been described in a 

variety of animal species of both ruminant and non-ruminant origin, but the infection 

is most often associated with economic losses in ruminants. In Denmark, the infection 

is fairly prevalent in the Danish dairy cattle with approximately 50% of the herds 

infected (Nielsen et al., 2000) and 5-13% of the cows infected in some areas (Nielsen 

and Agger, 2000). Precise estimates of the prevalence of the infection are not available 

because of a variety of diagnostic problems. These include: a) cross-reactive 

antibodies to other closely related bacteria, especially M. avium subsp. avium and M. 

avium subsp. silvaticum; b) lack of definitive proof of infection (lack of a gold 

standard) because MAP are obligate intracellular pathogens and can be present in an 

infected animal in minute amounts without being detected and perhaps even without 

yielding clinical disease; c) a cell-mediated immune response is expected to be the 

primary response, eventually followed by non-protective humoral immunity (Lepper et 

al. 1989; Stabel, 2000); d) chronicity of the infection with a typical incubation period 

of 1-3 years, perhaps longer (Whitlock and Buergelt, 1996); e) variable probability of 

having MAP antibodies with different cow characteristics (Nielsen et al.,2002b). 

Because of these factors potentially affecting the efforts to establish the diagnosis 

‘paratuberculosis’ and because different farmers have different purposes with the final 

diagnosis, there is a need to come up with clear definitions that may help the farmer in 

the process making the diagnosis ‘paratuberculosis’ for the a specific purpose. Based 

on information from different studies (Nielsen et al., 2002a; Nielsen et al., 2002b; 

Nielsen et al, J. Dairy Sci.) different and dynamic antibody concentrations in different 

‘cow types’ could be suggested (Fig. 1). The four cow types are: a) non-infected; b) 

infected with a cell-mediated immune response controlling the infection; small 

amounts of antibodies will be present because of an equilibrium between humoral 

immunity and cell-mediated immunity; c) and d) infected cows loosing control of the 

infection at some time point. This could be either before or after they become cows (as 

defined by their first calving). To be able to detect small concentrations of antibodies, 
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the analytical sensitivity has to be high. However, we still have the complicating factor 

with cross-reacting antibodies, which have not been accounted for in Fig. 1, and which 

are not easily determined. Thus, if the detection limit should be maintained at a low 

level we have to make some compromises on the diagnostic specificity. Also, it is 

important to be able to differentiate between the unspecific reactions and laboratory 

variation. This has not been described with the enzyme-linked immunosorbent assay 

(ELISA) used in the above-mentioned studies. The variability used in these studies has 

been used to draw inferences on the ‘cow types’ in Figure 1. Therefore, the ELISA has 

been optimised to increase the analytical sensitivity. However, using the ELISA in this 

way also requires sound use of the laboratory variability and therefore knowledge on 

this has to be obtained. 

The objective of this study was to determine the intra-laboratory variability due 

to within-run variation and between-run variation. The diagnostic performance have 

been described elsewhere (Nielsen et al., 2002a) and it was not the purpose to 

determine this. 

 

Materials and Methods 

Origin of samples 

Samples from two herds were selected. From one herd, MAP had been detected 

on a regular basis for a number of years and this herd was classified as a “high-

prevalence herd” (herd H). In the other herd, MAP had never been detected even 

though culture from faecal samples from all cows had been carried out 3 times during 

the past 2 years. This herd was classified as a “low-prevalence herd” (Herd L) since 

milk samples from some cows had previously shown to have significant (p<0.05) 

probability of being infected, and some of the cows present in the herd were known to 

origin from a herd where MAP had been detected. In these two herds, all lactating 

animals were sampled through the monthly milk-recording scheme. From Herd L, 

samples from 62 cows were collected and from Herd H samples were collected from 

58 cows. Using this sampling strategy it was assumed, that infected cows from 

different stages of infection along with different concentrations of antibodies would be 
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present. Of the cows from herd H, 44 cows had been faecal culture negative on one or 

more samplings, 4 cows had never been cultured, and 10 cows had been faecal culture 

positive on at least one sampling during the past 2 years. In Herd L, 38 cows had been 

faecal culture negative on 1-3 samplings and samples from 21 cows had never been 

cultured. 

The milk samples collected were treated with bronopol (with a bactericidal 

effect) and methylblue at the sampling according to standard procedures. At arrival at 

the laboratory, the samples were centrifuged, the fat fraction removed, and the samples 

were frozen below –18 oC for later testing.   

 

Diagnostic test 

An ELISA was developed based on a commercially available antigen (Allied 

Monitor, Fayette, Missouri, USA) and adapted for milk testing as previously reported 

(Nielsen et al., 2001; Nielsen et al., 2002a). This antigen is designated ‘M. 

paratuberculosis Strain 18’ and it has previously been described to be a M. avium 

subsp. avium strain (Chiodini, 1993). Therefore, the analytical specificity of the 

antigen could be expected to be lower for this antigen than for a M. avium subsp. 

paratuberculosis strain. However, this was investigated in a different study (Nielsen et 

al., 2001) and no apparent difference was found, so it was decided to continue the use 

of this antigen. 

Briefly, the diagnostic method was performed as follows: Polysorp microtiter 

plates (Nunc, Roskilde, Denmark) were coated with the antigen in a 2 µg/ml solution 

(diluted in 0.1 M carbonate buffer, pH 9.6). The coated plates were left for 3 days at 

5oC. Subsequent to unfreezing, the milk samples were diluted 1:2 in M. phlei (Allied 

Monitor) whereby the most unspecific antibodies were absorbed (Yokomizo et al., 

1985). The absorbed samples were left overnight at 5oC. On the following day, the 

coated plates were washed five times in phosphate-buffered saline (pH 6.8) with 

0.05% Tween20 (PBST20). The absorbed samples were then added the coated plates 

(100 µl per well) and the plates were incubated to the following day at 5oC. On the 

subsequent day, splashing the content followed by 5 repeated washings with PBST20 
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emptied the plates. To each well, 100 µl of a 1:2,000 dilution of peroxidase-labeled 

goat anti-bovine IgG (H+L) (Kirkegaard and Perry Laboratories, Gaithersburg, 

Maryland, USA) was added. The plates were incubated 1 hour at 20oC and washed 

again 5 times with PBST20. Ortho-phenylene diamine (OPD) (Kem-En-Tec, 

Copenhagen, Denmark) was diluted in citrate buffer (pH 5.0) to a concentration of 300 

µg/ml and 100 ml of solution was supplemented with 80 µl H2O2. One hundred 

microliter of this solution was added each well, and the chemical reaction was stopped 

with 100 µl 0.5 M H2SO4 per well when the colour development in the positive 

controls visually had peaked. Reading of the OD-values was done using an ELISA-

reader with a 492-nm filter and a 620 nm-filter as reference. 

  

Sample set-up 

To test the between-day, between-run and between-plate variability, each 

sample was tested on three different days and at two different runs on two of those 

days. Also, to assess intra-plate variation, each sample was tested in duplicate in each 

plate. In total, each sample had the potential of being tested 10 times in 5 different 

ELISA plates. Unfortunately, for some of the samples there was only sample material 

for some of the ELISA-plates. Because of this reduction, 4 samples were tested only 6 

times, 9 samples were tested 8 times and 107 samples were tested 10 times, a total of 

120 samples tested 1166 times which were used for the statistical analysis.  

 

Statistical analysis 

A mixed model approach was used to analyse the data. In normal fixed effects 

models it is assumed that the variances for all observations are the same. This 

assumption is often violated due to various clustering effects whereas in the mixed 

model the covariance can be specified for random effects thus minimising the 

overparameterisation induced in a fixed effects model (Brown and Prescott, 1999). 

Therefore, a mixed model approach was used to analyse the data through analysis of 

variance using the Mixed procedure in SAS (Littell et al., 1996) based on the 

principles suggested by Singer (1998). The basic model used was: 
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ijklmnklmnnmlkjijklmn EUDRPTCY +++++++= 0.....0β  

where  

Yijklmn was the log transformed value of OD-values for a sample tested in 

test no. T in ELISA-plate P in run no. R on day D where the sample 

originated from cow C.   

Cij = the fixed effect of the cow; 

Tik  = the random effect of the test number in the ELISA plate; 

Pil = the random effect of ELISA-plate; 

Rim = the random effect of run number; 

Din = the random effect of day number; 

U0klmn = the group mean for the random effects;  

Eijklmn is the random error,  

and where the random effects (RE) and Eijklmn were assumed independent, 

identically distributed normal with mean 0 and variance components σRE
2 

and σ2, respectively. The variance-covariance structure of all random 

effect matrices were the unstructured type. 

 

Major interaction terms of the laboratory effects (all cross-products of the 

variables test number, plate-number, run number, day) were evaluated and if 

significant, the test number was nested in plate number, plate number in run number 

and run number was nested in day number. The model was evaluated using the 

likelihood ratio test (at p=0.05) and Akaike’s Information Criterion (AIC) to obtain the 

model with the best fit. The above-mentioned assumptions on the distribution and 

independence were also evaluated.  

The variance components of the random effects were evaluated using the 

restricted maximum likelihood and the results were used to estimate the sources of 

variation of the ELISA test. Normally, re-test of a sample is done when the difference 

between the duplicates is more than 0.100 OD-values. It was assessed whether this 

would change the results. 
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Results 

The statistical analyses showed, that an interaction between plate-number, test 

day and run number existed whereas the other interaction terms were insignificant. 

Therefore, ELISA-plate was nested in run number, which was nested in test day. The 

resulting variance components are presented in Table 1.  

Evaluation of the residuals showed that these were not normally distributed by 

Kolmogorov-Smirnovs test of normality. However, visual inspection of the results 

indicated, that these tests where insufficient and the result was influenced greatly by a 

number of outliers. Removing 14 outliers (based on the standardized residual criterion) 

and repeating the analysis did not change the estimates much (model 2, Table 1) 

whereas the residuals were now normally distributed according to the normality test. A 

plot of the predicted versus the residuals indicated that the observations were 

identically and independently distributed. 

Usually, the sample from one cow is retested if the duplicate set-up of the 

sample differs by 0.100 OD-value. Sixteen duplicates had to be retested if this strategy 

was followed. Exclusion (model 3, Table 1) of retest samples did not change the 

estimates either. 
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Table 1. Variance components from a model to predict the ELISA response to 

Mycobacterium avium subsp. paratuberculosis in dairy cattle. The model was based 

on 1166 samples from 120 animals from two herds sampled in September 2001. 

Model and variance  

component (VC) 

Covariance 

Estimate 

Standard 

error 

% 

explained 

by VC 

z-test for 

significance 

(p-value) 

Model 1 (All observations) 

ELISA-plate (Run(Day))1 0.1517 0.05408 72% 0.0025 

Test number 0.000102 0.000284 0.05% 0.36 

Residual 0.05746 0.002583  < 0.0001 

Sum of variation 0.20926    

Model 2 (Outliers excluded) 

ELISA-plate (Run(Day))1 0.1448 0.05150 80% 0.0025 

Test number 0.000019 0.000120 0.01% 0.44 

Residual 0.03698 0.001675  < 0.0001 

Sum of variation 0.1818    

Model 3 (Retest samples excluded) 

ELISA-plate (Run(Day))1 0.1495 0.05330 73% 0.0025 

Test number 0.000101 0.000280 0.05% 0.36 

Residual 0.05456 0.002453  < 0.0001 

Sum of variation 0.20416    
1 ELISA-plate(Run(Day)) = The nested effect of ELISA-plate in run number in test day. 
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Discussion 

Establishment of the various contributors of variation and their relative importance is 

necessary to determine areas on where to put greater focus. It is also important to determine if 

the variation has a size, which renders action necessary. In this study it was determined, that 

the major variability of the present ELISA is located in the combined between-day-between-

run-between-plate variable and that this variation could account for 72% of the total 

laboratory variability. This was 15% of the total variation in the data, where 80% of the 

variation could be attributed to the cow identity (data not shown). The intra-plate variability 

was, however negligible, with only 0.05% of the total variability. These findings affirm our 

general impression of the test that some between-plate variability does exist. The between-

plate variability should be considered when interpreting the ELISA in general and if the 

ELISA should be used for routine diagnosis a smaller degree of variability would be 

preferable for ease of interpretation.  

Concentration of antibodies in milk 

Not infected

Infected without control at 1st calving

Infected – loosing control at 2nd calving 

1st calving 2nd calving 3rd calving 

0

Infected with control of the infection

Cross-reacting 
antibodies???

Fig. 1. Schematic representation of the theoretical dynamics of antibodies in 
cattle infected with Mycobacterium avium subsp. paratuberculosis. A probable 
effect of cross-reacting antibodies is also included. 
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Significant between-day laboratory variability is not a one-stand occurrence in routine 

laboratory practice. In some tests such variability can be a huge problem, in others be 

insignificant. In research-oriented work the variability can be dealt with through appropriate 

statistical models. However, in the routine diagnostics, insignificant variability would be 

desirable. More routine among the laboratory staff on the specific test could be a requirement 

in some cases. If the problems would be solved in the present case is unknown.  

Because of the variability described, it is not easy to determine a fixed cut-off, where 

any sample could be determined antibody positive or antibody negative at any concentration. 

Doing so with samples with know antibody concentration would provide an option, but the 

variability of these samples would be expected to be of the same magnitude as that of the 

samples described here, and the problems of cross-reactive antibodies still would not have 

been overcome. Preliminary analyses in other studies have indicated a difference in 

background colouring based on various cow characteristics (data not shown). To deal with 

such variability these factors would have to be elucidated further. 

Mixed effects models are not generally used in test validations studies. However, one 

of the major advantages using mixed effects models is that it is not the level of antibodies that 

is modelled but it is the variation, which is modelled (Brown and Prescott, 1999). Modelling 

with mixed effect models therefore precludes artificial variance inflation due not the specific 

level of samples. Therefore, mixed effects models have a huge potential in test evaluations. 

Based on the findings in this study it can be concluded that: the present ELISA 

presents with significant between-run variation, which should not be ignored. However, the 

intra-run variability has a magnitude that can be considered negligible. 
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Chapter 3.  Timing and dynamics of the immune response  

 

Introduction  

The aim of chapter 3 is to describe cow-time factors that are of importance to the 

ELISA reading and thereby interpretation. Paper IV describes the differences in odds 

of being ELISA positive in a serum ELISA and a milk ELISA for cows in different 

parities and at different stages of lactation. The data for the study in Paper IV are 

based on cross-sectional data. Paper V describes the dynamics of the ELISA values in 

different types of cows, where knowledge of faecal culture is also included. The gain 

by repeated samples is demonstrated and the difference in timing of the onset of 

immune responses is illustrated. Integration of the results with other information 

obtained in the present thesis is done in Chapter 4. 
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Abstract 

Two cross-sectional studies were carried out to determine the enzyme-linked 

immunosorbent assay (ELISA) response to Mycobacterium avium subsp. 

paratuberculosis by cow characteristics and stage of lactation. One of the studies 

(referred to as ‘milk-group’) used milk samples from all lactating cows (n=7994) in 

108 Danish dairy herds. The other study (referred to as ‘serum-group’) used serum 

samples collected from all cows (n=5323) in a subset of 72 herds from the 108 herds. 

These samples were analysed using a similar ELISA for detection of antibodies.  

The results from the ELISAs were interpreted with two cut-off values as the 

optimal cut-off value is not known, and as several levels are recommended to be used 

in practice. The results showed that the probability of being ELISA-positive was 2-3 

times lower for cows in parity 1 relative to cows in other parities using both milk and 

serum ELISA. At the beginning of the lactation the probability of being positive was 

highest in the milk ELISA. In the serum ELISA the odds of being positive was highest 

at the end of lactation. The findings are important in the interpretation of ELISA 

results at cow-level with a subsequent tentative diagnosis and correction for parity and 

stage of lactation should be considered when providing a diagnosis of 

paratuberculosis. Some issues related to the pathogenesis are also discussed. 

 

Keywords: ELISA; paratuberculosis; cattle-microbiological disease; antibody pattern 
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1. Introduction 

 

Mycobacterium avium subsp. paratuberculosis (Map) is the causative agent of 

the chronic disease paratuberculosis (also known as Johne’s disease) of cattle and 

other ruminants (Chiodini et al., 1984). The incubation time is of varying duration, but 

in general cattle do not develop clinical signs of disease before 2 years of age 

(Whitlock and Buergelt, 1996). In some infected animals, clinical disease never 

develops, either because they are culled before the disease is manifested, or, as some 

suggest, because some infected cattle are able to clear themselves of the infection 

(Bendixen, 1978). One indicator of latent or subclinical infections could be changes in 

immune responses (Lepper et al., 1989). M. avium subsp. paratuberculosis is an 

intracellular pathogen that initially elicits a cell-mediated immune response. This is 

usually assumed to take place at the earliest, at 1-10 months of age. The cell-mediated 

immune response may then be followed by a non-protective humoral immune response 

at 10-17 months of age, though many infected animals do not show a clear humoral 

immune response before 33 months of age  (Lepper et al., 1989). The humoral immune 

response is dominated by the cytokines produced by TH2-cells. The key factor 

responsible for the shift to a humoral immune response remains to be identified, but at 

all times, a base-line level of antibodies (perhaps below the detection limit of most 

tests) is present.  

Some commercial enzyme-linked immunosorbent assays (ELISAs), e.g. 

Parachek®(CSL Limited, Parkville, Victoria, Australia ) and Herdchek® (IDEXX 

Laboratories, Westbrook, Maine, USA), use single cut-off values for inferring whether 

an animal is infected, and most studies undertaken to study risk factors for 

paratuberculosis have also used a single cut-off value to denote paratuberculosis 

positive animals (e.g. McNab et al., 1991; Jakobsen et al, 2000; Johnson-Ifearulundu 

et al., 2000). These cut-off values are established to gain as high a specificity as 

possible, often referenced as more than 99% specific (Collins et al., 1991) in order to 

minimise cross-reactions by antibodies stimulated by the ubiquitous M. avium subsp. 

avium. The chronic nature of the disease, the varying incubation time, differences in 
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farm-level presence of M. avium subsp. avium and differences in immune responses of 

animals, however, suggest that the results from the ELISAs should be interpreted with 

more than two outcomes. Also, animal characteristics and perhaps farm-specific 

interpretation should be considered and optical density (OD) values should be 

corrected for these factors. The varying incubation time and the fact that some infected 

cows never become clinically diseased (Clarke, 1997) indicate the necessity of using 

several levels of interpretation of the ELISA results given different objectives; for 

example, to identify infected animals or to identify animals that are more likely to shed 

mycobacteria or develop clinical disease. 

Production and concentration of antibodies in milk and serum, especially IgG1 

and IgG2, have been described in many studies. However, these studies focus mainly 

on the production of IgG necessary for transferral of passive immunity to the off-

spring (e.g. Shearer et al., 1992; Guy et al., 1994) rather than studying pathogen 

specific changes with time. The latter have to our knowledge not been determined with 

paratuberculosis but have been described with mastitis pathogens (Caffin et al., 1983; 

Caffin and Poutrel, 1988). Most studies indicate a concentration effect on IgG at the 

beginning of lactation in milk with a concomitant decrease in serum IgG (Dixon et al., 

1961; Williams and Millar, 1979; Guidry and Miller, 1986). Few studies have 

investigated the variation across the entire lactation (Klobasa et al., 1977; Guidry and 

Miller, 1986) and in these studies, total IgG was studied rather than pathogen specific 

IgG. 

The objective of our study was to determine whether ELISA response to Map 

varies by cow characteristics and stage of lactation.  

 

2. Materials and Methods  

 

2.1. Herds and animals 

 

Throughout the text, reference to infection and paratuberculosis is according to 

the following definitions: Infection was any condition where entrance of 
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Mycobacterium avium subsp. paratuberculosis (Map) or related bacteria might have 

caused a rise in antibodies detected by the diagnostic test used. It was assumed 

infection persists for life. Further subdivision encompasses Map infection and “other 

mycobacterial infections yielding a Map-like immune-response” detectable by ELISA 

and indistinguishable in ELISA from Map. Paratuberculosis (including both clinical 

and subclinical) was any condition where infection, as defined above, gives rise to any 

unfavourable condition, e.g. diarrhoea, weight loss or loss of milk yield. 

Data for the cross-sectional study originated from two data sets, referred to here 

as ‘milk-group’ and ‘serum-group’ collected in the period August 1999 to February 

2000. The herds in the ‘serum-group’ were a subset of the herds of the milk-group so 

details on the ‘serum-group’ are given when appropriate.  

The animals in the ’milk-group’ were from a region with approximately 260 

dairy herds in Southern Jutland, Denmark, where the Danish Dairy Board initiated a 

study in 1998 (Andersen et al., 2000). Of these herds, 108 gave their permission for 

studies on infectious diseases (Eschericia coli O157, salmonellosis, mastitis related to 

Streptococcus uberis and paratuberculosis). Milk samples (n=7994) were collected 

once from all lactating cows in these herds, from the routine milk production scheme. 

On arrival at the Cattle Health Laboratory3, the samples were centrifuged, the fat 

fraction was removed and the skim milk frozen for later testing. The animals in the 

‘serum-group’ were from a subset of 72 herds from the 108 herds. Twenty-eight of the 

herds were selected based on the highest prevalence of high-level ELISA response in 

the milk samples. The remaining 44 herds were identified based on a first-sign-up-for-

the-project basis. Samples were collected in un-stabilised blood tubes, and upon arrival 

at the laboratory, the samples were centrifuged, the blood clots were removed, and the 

serum fractions were frozen for later testing.  

The size and composition of the herds were as follows: minimum: 21 cows; 25th 

percentile: 55 cows; median: 65 cows in milk-group, 70 cows in serum-group; 75th 

percentile: 89 cows in milk-group, 86 cows in serum-group; maximum: 229 cows. The 

breed composition of the animals was as follows: a) Red Danish: 208 cows in the 
                                                 
3 The Cattle Health Laboratory, Danish Dairy Board, Ladelundvej 85A, DK-6650  Brørup, Denmark 
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‘milk-group’, 121 cows in the ‘serum-group’; b) Danish Holstein: 6488 cows in the 

‘milk-group’, 4325 cows in the ‘serum-group’; c) Danish Jersey: 858 cows in the 

‘milk-group’, 664 cows in the ‘serum-group’; d) Danish Red-and-White: 18 cows in 

the ‘milk-group’, 17 cows in the ‘serum-group’; e) Crossbreed: 422 cows in the ‘milk-

group’, 196 cows in the ‘serum-group’. 

 

2.2. ELISA methods 

 

The serum samples in the ‘serum-group’ were tested using a serum ELISA 

previously described (Nielsen et al., 2001). The milk samples in the ‘milk-group’ were 

tested using the same ELISA, but slightly modified, i.e. the antigen was used in a 

concentration of 2.0 µg/ml instead of 1.0 µg/ml, conjugate was used at the dilution of 

1:2,000 instead of 1:4,000 and dilution of the samples was 1:2 in Mycobacterium phlei 

in the milk ELISA only. Serum was diluted 1:10. Each sample was tested in duplicate. 

The results from the tests were given as raw optical density (OD) values. The raw OD-

values were adjusted with a standard sample used on all ELISA-plates (4 wells 

containing the standard sample per plate) by subtracting the average OD-value of the 

standard sample from the average OD value of the sample under consideration. These 

corrected OD values (ODC) were used for the statistical analyses.  

 

Table 1  

Distribution of cows by ELISA-category and cut-off points from 108 herds 

(‘milk-group’) and 72 herds (‘serum-group’). 

 Cut-off Number of samples in 

category 

Category Milk ELISA Serum ELISA Milk-group Serum-group 

0 -4 < x ≤ -0.030 -4 < x ≤ 0.345 6272 4028 

1 -0.030 < x ≤ 0.600 0.345 < x ≤ 0.884 1605 1145 

2 0.600 < x ≤ 4 0.884 < x ≤ 4 117 150 
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2.3. Statistical methods 

 

The ELISA reaction was evaluated using logistic regression analyses with the 

GLIMMIX procedure in SAS® version 8. Initially, the ODC-values were divided into 

three categories: 0, 1 and 2. Cut-off point 1 was the ODC where the validity of the 

diagnostic tests was optimised, i.e. where the point of the receiver-operating 

characteristic (ROC) curves was closest to the point (0,1) in a ROC-diagram when 

evaluating the test. Cut-off-point 2 was the point where the ROC-curve was steepest, 

i.e. the specificity of the test was optimised (Nielsen et al., 2002). The estimated 

sensitivities (Se) and specificities (Sp) at these two cut-off points for each ELISA 

were: SeMilk,1=0.817 and SpMilk,1=0.745; SeMilk,2=0.391 and SpMilk,2=0.964; 

SeSerum,1=0.652 and SpSerum,1=0.721; SeSerum,2=0.161 and SpSerum,2=0.961 The specific 

cut-off values and the number of samples for each of the two tests are given in Table 1.  

Subsequent to the production of three ELISA levels, descriptive statistics were 

carried out. Because the number of animals of some breeds was small and because 

there was no apparent difference into the number of cows at each ELISA-level for 

breeds other than Jersey, these were all combined into one group. Jerseys, however, 

have been described to have a higher risk of paratuberculosis (McNab et al., 1991) and 

higher ELISA reaction (Jakobsen et al., 2000). Therefore, breed was categorised into 

Jersey and Non-Jersey. All cows were categorised into one of three parity groups: 

Parity 1, 2 and >2, and categorised into one of four stages in lactation: 1-2 weeks, 3-12 

weeks, 13-28 weeks and 29-44 weeks. Data on all cows more than 308 days in 

lactation were omitted because of apparently different ELISA-patterns and because we 

wanted to make sure they were not classified in the wrong lactation. Pritchett et al. 

(1991) reported that the IgG1 concentration was influenced by volume of milk, so the 

milk yield on the day of sampling was included in the analyses to control for this 

effect. The milk yield variable was standardized based on the predicted milk 

production using the model:  
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where Mik is the standardised milk production on the kth day (Dk) in 

lactation for cows in parity Pi; b0 is the estimated mean milk production at 

day 60 in milk, b1 is the coefficient for the change in milk production 

from day 1-59 in milk, b2 is the coefficient for the change in milk from 

day 60-308 in milk, and Pi = the effect of the ith parity (parity was defined 

as 1=1, 2=2, 3=3 or greater). 

The two datasets were initially analysed with proportional hazard polytomous 

regression using the logistic procedure in SAS®. However, the assumption of 

proportional hazards was not met (Hosmer and Lemeshow, 1989, pp. 217-233). 

Therefore, the data were analysed comparing each of the ELISA-levels 1 and 2 to level 

0, separately, using the GLIMMIX macro in SAS®, with herd as a random effect. 

Given herd was non-significant, logistic regression using the Logistic procedure in 

SAS® was used instead. The explanatory variables evaluated were: Jersey/ Non-Jersey, 

stage of lactation, parity and 1st order interactions between these three variables. If 

interaction was demonstrated between parity and stage of lactation, the latter was 

nested in parity. The regression models were created using backward elimination, 

using the likelihood ratio test at the 95% level of confidence as the cut-off for 

inclusion in the model. The resulting parameter estimates were used for calculation of 

population odds ratios and probabilities for stage of lactation, and parity when 

controlling for milk yield as a fixed effect (milk-group only). 

 

3. Results 

 

The descriptive statistics yielded a distribution of samples in each of the 3 

categories of the response-variable as given in Table 2. All results of Jerseys are 

omitted because the interaction between parity and Jersey was significant and there 

were too few Jerseys to fit a reasonably precise separate model for that breed. 

For each of the datasets, a final logistic regression model was fitted at each of the 

ELISA cut-offs (1 and 2), including stage of lactation and parity. Herd was not found 
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significant (at p=0.05) using the likelihood ratio test, thus fixed effect models were 

used. The first model was: 

ijkkji
ijk

ijk ebU
Y

Y
++++=

−
MD*SP)

1
ln( 1 ,  (2) 

where Yijk = ELISA-result (positive=1, negative=0 at low cut-off); 

U = the underlying background level of the ELISA; 

Pi = the effect of the ith parity (parity was defined as 1=1, 2=2, 3=3 or 

greater); 

Sj = the effect of the jth stage of lactation (stage of lactation was defined as 

1 = weeks 1-2, 2 = weeks 3-12, 3 = weeks 13-28, 4 = weeks 29-44 post 

partum); 

MDk = milk production (kg) on the kth day in lactation minus the expected 

milk volume on the kth day of sampling according to equation 1;  

b1 = regression coefficient for MDk; 

eijk = a random residual component; 

MDk was included only in the analyses of the ‘milk-group’. 

No significant interaction between parity and stage of lactation was revealed for 

the ’milk-group’ at the low cut-off (Table 3). Parity 2 and greater cows were 

approximately 3-4 times more likely to be ELISA-positive than parity 1 cows. The 

odds of being positive in the first two weeks of lactation were almost twice those 

during weeks 29-44.  

The second model was fitted for the ’milk-group’ at the high cut-off (Table 4). In 

parity 2 and higher, the odds of being ELISA-positive were approximately twice those 

of being ELISA-positive in parity 1.  

The logistic regression of the ‘serum-group’ at the low cut-off yielded an 

interaction between parity and stage of lactation. Therefore, stage of lactation was 

nested in parity (Table 5). In general, there was an increase in the odds of being 

ELISA-positive with increasing parity. However, during the first weeks of lactation, 

the odds were generally lower than the odds at the end of the previous parity (Fig. 1). 
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The model fitted for the ‘serum-group’ at the high cut-off for the ELISA is 

presented in Table 6. Parity 2 and greater cows were significantly more likely to be 

ELISA-positive relative to parity 1 cows with odds for being ELISA-positive of 2-2.5 

times higher than in 2nd and higher parity cows.  

 

Table 2  
Frequency distributiona of cows by parity, stage of lactation and ELISA category after 
data editing (no Jersey cows and no cows >308 days in lactation). Cross-sectional 
sampling of milk samples from 6090 cows in 101b herds and serum samples from 3796 
cows in 66b Danish dairy herds. 
 Milk ELISA categoryc Serum ELISA categoryc 
 0 1 2 0 1 2 
Parity 1       

Weeks 1-2 76 (78%) 21 (22%) 0 (0%) 57 (92%) 4 (6%) 1 (2%) 
Weeks 3-12 609 (93%) 48 (7%) 1 (0%) 403 (91%) 36 (8%) 3 (1%) 
Weeks 13-28 705 (94%) 46 (6%) 3 (0%) 467 (87%) 59 (11%) 10 (2%)
Weeks 29-44 680 (89%) 76 (10%) 9 (1%) 381 (82%) 72 (16%) 10 (2%)

Parity 2       
Weeks1-2 34 (63%) 17 (31%) 3 (6%) 38 (83%) 7 (15%) 1 (2%) 
Weeks 3-12 324 (78%) 88 (21%) 4 (1%) 195 (73%) 63 (24%) 8 (3%) 
Weeks 13-28 511 (78%) 128 (20%) 12 (2%) 245 (69%) 102 (29%) 8 (2%) 
Weeks 29-44 398 (75%) 125 (24%) 5 (1%) 186 (62%) 98 (33%) 14 (5%)

Parity >2       
Weeks 1-2 46 (59%) 32 (41%) 0 (0%) 37 (77%) 10 (21%) 1 (2%) 
Weeks 3-12 414 (73%) 146 (26%) 10 (2%) 223 (67%) 99 (30%) 10 (3%)
Weeks 13-28 678 (77%) 190 (22%) 12 (1%) 375 (66%) 165 (29%) 26 (5%)
Weeks 29-44 446 (70%) 188 (29%) 5 (1%) 262 (69%) 106 (28%) 14 (4%)

a) In a few cases, the frequencies do not add up to 100% because of rounding. 
b) ELISA category 1: Cut-off-point 1 < ODCorr ≤ Cut-off-point 2 
c) Some herds had only Jersey cows, hence the whole herd was omitted 
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Table 3  
Logistic regression for ELISA antibody response at low cut-off for milk samples from 
6090 cows in 101a herds. The model included parity and stage of lactationb. 
Stratum Regression coefficient Standard error OR (95% C.I.)c 
Intercept -2.197 0.086 - 
MD¤ -0.035 0.006 - 
Parity    

1 0.000 - 1.00 
2 1.148 0.095 3.15*** (2.62-3.79) 
>2 1.354 0.089 3.87*** (3.25-4.61) 

Stage of lactation    
Weeks 1-2 0.565 0.159 1.76*** (1.29-2.40) 
Weeks 3-12 -0.196 0.087 0.82** (0.69-0.98) 
Weeks 13-28 -0.356 0.081 0.70*** (0.60-0.82) 
Weeks 29-44 0.000 - 1.00 

a Some herds had only Jersey cows, hence the whole herd was omitted 
b Difference in milk volume relative to expected milk volume (MD) was included as a fixed effect. 
c 95% C.I. = 95% Confidence interval.  
**P<0.01, ***P<0.001 
 

Table 4  
Logistic regression for ELISA antibody response at high cut-off for milk 
samples from 6090 cows in 101a herds. The model included parityb. 
Stratum S  
Parity  

Regression 
coefficient

Standard 
error 

OR (95% C.I.)c  

Intercept -5.349 0.284  
MD¤ -0.135 0.020  
Parity 1 0.000 0.000 1.00 
Parity 2 0.856 0.348 2.35* (1.19-4.65) 
Parity >2 0.611 0.345 1.84 (0.94-3.62) 
a Some herds had only Jersey cows, hence the whole herd was omitted 

b Difference in milk volume relative to expected milk volume (MD) was included as a 
fixed effect. 
c 95% C.I. = 95% Confidence interval.  
*P<0.05 
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Table 5. Logistic regression for ELISA antibody response at low cut-off for serum 
samples from 3796 cows in 66 herdsa. The model included stage of lactation nested in 
parity. 
Parity and stage of 
lactation 

Regression 
coefficient 

Standard 
error 

OR (95% C.I.)b  

Intercept -2.434 0.466  
Parity 1    

Weeks 1-2 0.000 0.000 1.00 
Weeks 3-12 0.098 0.496 1.10 (0.42-2.91) 
Weeks 13-28 0.521 0.484 1.68 (0.65-4.35) 
Weeks 29-44 0.895 0.482 2.45 (0.95-6.29) 

Parity 2    
Weeks 1-2 0.876 0.607 2.40 (0.73-7.89) 
Weeks 3-12 1.423 0.487 4.15** (1.60-10.77) 
Weeks 13-28 1.633 0.480 5.12*** (2.00-13.12) 
Weeks 29-44 1.926 0.482 6.86*** (2.67-17.64) 

Parity >2    
Weeks 1-2 1.221 0.579 3.39* (1.09-10.55) 
Weeks 3-12 1.718 0.481 5.57*** (2.17-14.30) 
Weeks 13-28 1.759 0.475 5.81*** (2.29-14.73) 
Weeks 29-44 1.653 0.479 5.22*** (2.04-13.36) 

a Some herds had only Jersey cows, hence the whole herd was omitted 

b 95% C.I. = 95% Confidence interval  
*P<0.05, **P<0.01, ***P<0.001 
 

Table 6. Logistic regression for ELISA antibody response at high cut-off for serum 
samples from 3796 cows in 66 herdsa. The model included parity. 
Stratum  Regression coefficient Standard error OR (95% C.I.)b 
Intercept -4.122 0.206  
Parity    

1 0.000 0.000 1.00 
2 0.746 0.273 2.11** (1.23-3.60) 
2> 0.898 0.251 2.46*** (1.50-4.01) 

a Some herds had only Jersey cows, hence the whole herd was omitted 

b 95% C.I. = 95% Confidence interval  
**P<0.01, ***P<0.001 
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Fig. 1. Odds for being ELISA positive for cows from the ‘serum-group’ at the low cut-off point for cows in 

different parities at different stages of lactation in 3796 cows from 66 Danish dairy herds. 

 

4. Discussion 

 

Paratuberculosis is a chronic infection with a prolonged immune response. The 

primary immune response is a cell-mediated immunity, where production of antibodies 

occurs but is more or less suppressed. In some animals, a secondary humoral immune 

response will assist to increase the concentration of antibodies. The results in this 

study indicate, that although some cows are ELISA-positive (in either test and at either 

cut-off point) in the 1st parity, the probability of being positive is at maximum in parity 

2 or higher. Also, the probability of being ELISA-positive is different across a 

lactation, with inverse patterns of probabilities between milk and serum indicating a 

change in antibody concentration throughout the lactation. This is only the case at low 

cut-off points, possibly indicating that cows with low antibody concentrations are 

infected but with a cell-mediated type of immune response. This is speculative and 

would have to be supported by a longitudinal study with repeated measures on the 
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same cows. Multiple response levels or ELISA-readings on a continuous scale would 

help solve this pathogenetic hypothesis. 

From a diagnostic point of view it is important to recognise the differences in 

ELISA positives in different parities at different stages of lactation. The use of 

different cut-off points in the interpretation of ELISA results could resolve the issue if 

the ELISA is to be used in routine diagnostics.  

In this study, the low prevalence of high-level responders calls for careful 

interpretation of the results. Similarly, the specificity of the tests are not 100% and 

cross-reactions with other mycobacterial infections are possible. Cows in this study did 

not have a definitive diagnosis of paratuberculosis with an agent detecting method. 

However, knowing the poor correlation between agent detection and immune response 

detection (Nielsen et al., 2002), such information would probably not change the 

conclusions but rather misclassify some cows due to the low sensitivity of agent 

detection methods. The low sensitivity of ELISA tests, in this study, would also 

misclassify some cows as negative even though they are infected. Therefore, the odds 

ratio estimates provided could as well be too low as too high. 
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Chapter 4. Discussion: Definition of paratuberculosis – Cow-typing and 

purposes of testing 

 

Introduction 

‘Paratuberculosis’ can be considered the disease4 entity, which may follow 

infection with Mycobacterium avium subsp. paratuberculosis. This condition is not 

easily determined in many situations. The main reasons are the nature and the 

dynamics of the infection and the variable validity of the diagnostic tests. The 

undesirable effects of the infection can be decreased animal welfare, production losses 

and perhaps decreased food safety, all of which are of different interest to different 

decision-makers, i.e. farm managers, agricultural politicians, food safety managers and 

others.  

Techniques, time and tests are the main issues dealt with in the past 2 chapters of 

this thesis. Each component may contribute to the perception of paratuberculosis. The 

perception of paratuberculosis should be in agreement with the purposes of the 

decision-makers. Thus, techniques, time and tests are also needed when addressing the 

definition of paratuberculosis. The following is a discussion on implementing the 

knowledge from Chapters 2 and 3 for different control purposes with additional 

discussions concerning the implications of variability of the tests used to determine 

paratuberculosis status. First, a brief introduction of the use of diagnostic tests in 

control programs for infectious cattle diseases is provided. Then, a discussion linking 

the papers presented in the past chapters is given along with some critical remarks of 

some potential drawbacks of the papers are listed. This discussion addresses handling 

of technical and biological variability. Finally, a proposal for defining paratuberculosis 

cow-types based on ELISA-results are given in order to extent the use of ELISA for 

different purposes. 

 

                                                 
4 General disease definition according to Dictionary of Veterinary Epidemiology (Toma et al., 1999): 
Noncompensated perturbation of one or several functions of an organism. 
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Use of diagnostic tests in control programs 

Diagnostic tests are crucial in many infectious disease control and surveillance 

programs. However, the tests still need to be interpreted in combination with other 

information to obtain purpose-related information applicable in the control program 

(Bitsch and Rønsholt, 1995). In Denmark, examples of control and surveillance 

programs include surveillance of enzootic bovine leukosis (Anon., 2000) and 

infectious bovine rhinotracheitis (IBR) (Anon., 1999) based on bulk tank-milk and 

slaughterhouse blood samples; and eradication and surveillance of bovine virus 

diarrhoea (BVD) virus based on bulk tank-milk and other sampling strategies (Anon., 

2001). In the BVD control scheme, the tests constitute a major factor for monitoring 

the success of the control program. They are also important in detecting new infections 

in herds previously free of the infection and in the status of individuals being traded. 

The BVD-tests for individuals are not stand-alone tests. The major diagnostic 

advantages of BVD and IBR infections are the acute nature of the immune responses 

and easily interpretable tests. Information on herd or animal factors may need to be 

added to the information obtained from the laboratory tests to make conclusions 

according to one’s desires but the laboratory tests are cornerstones in the Danish BVD 

control scheme. In the scheme, different animal “types” are present:  “Acute 

infections” temporarily harbouring both BVD virus and BVD antibodies but ultimately 

only BVD antibodies; “Immunotolerant persistently infected calves” with BVD virus 

and no BVD antibodies, etc. The test results and combinations of different laboratory 

test results are handled differently for different purposes: some for monitoring the 

development (hopefully success) in the program; some for detection of new infections; 

and some for detection of infection-transmitting animals, i.e. different approaches for 

different purposes (Anon, 2001). 

Paratuberculosis infection is different in some aspects. The infection is chronic 

and in some infected cows, clinical disease may never develop (Chiodini, 1996; 

Whitlock and Buergelt, 1996). This is also due to the short production life of Danish 

dairy cows. The tests used for in this thesis are far from being 100% sensitive and 

specific as has been shown in the past chapters and elsewhere. This variability related 
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to the lack of valid test responses is from two major sources: biological and technical. 

The biological variability reflects the complex pathogenesis and will be discussed 

later.  

 

Technical variability 

The technical variability is a reflection of the variation of the laboratory tests 

irrespective of the origin of a random sample. Two different test methods have been 

used in the papers in this thesis, a bacteria culturing method and an immune test, an 

indirect antibody ELISA. The culture method is optimised to obtain a high analytical 

sensitivity without a loss of viable bacteria through the process of decontamination and 

laboratory processing. The result is fairly simple to interpret: presence or absence of 

the bacteria. Prior optimisation of the bacteriological culture with information 

concerning herd or animal characteristics is not immediately possible. Quantification 

of the bacterial load could have been performed in the present studies and thereby 

perhaps have added more information on the severity of shedding. Separation of the 

material presented in more categories (e.g. +, 2+, 3+ and 4+ as provided by the 

laboratory based on the number of colony forming units) would have produced more 

categories to provide this information. However, since repeated sampling from the 

same cows in another study gave varying results without apparent systematic effects 

(data not shown), subdividing the results of the bacterial culture on the background of 

colony-forming units was judged meaningless at the time. Hence, samples were 

classified as culture positive and culture negative only.  

For the ELISA, post-laboratory optimisation of the analytical sensitivity is 

possible. Or to be more exact, a combination of mathematical procedures and technical 

optimisation renders further interpretation of the ELISA test possible because 

information is kept through keeping variation in the low end of the reading scale of the 

ELISA rather than deleting the information. In any test system, the components of 

variability should be known to some extent in order to take necessary steps in 

eliminating or controlling significant variation. Having introduced a test system where 

we have attempted to increase the analytical sensitivity allowing higher laboratory 
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variation, we need to know the important reasons for variation in the test system in 

order to control them in other statistical analyses. To address the components of 

variability, the study described in Paper III was carried out. Based on that study, it was 

concluded that there was an effect of the ELISA-plate in which a given sample was 

tested in on a given day. Such variation is expected when using the ELISA technique 

and has been reported in other studies, also on paratuberculosis (Sweeney et al., 1995). 

Therefore, we have to in some way address the plate-to-plate variation. However, even 

though this variation has been recognized, no single standard method of dealing with 

the variation in statistical analyses of ELISA data is generally applied. Standard 

methods have been suggested in a publication of Officine International des Épizooties 

(Wright et al., 1993), but the mathematical basis for some of these must be considered 

vague, and in some instances even erroneous, because biological and technical 

variation is mixed. Two of the listed methods for reporting ELISA readings, raw 

optical density (OD) values and corrected OD values (ODC), are used in the work in 

the present thesis. A third, normalised OD-values, could also have been considered. 

The latter method is recommended by Jacobson (1998) for consensus purposes, but a 

‘statistically more correct standard method’ has not been determined. The raw OD-

value is the reading from the ELISA-reader. The corrected OD-value is calculated by 

subtracting a value of a negative control from the raw OD-value. The negative control 

should be representative of the negative population in which the test is used. This can 

be difficult to obtain, especially if no good reference test exist. If such representativity 

cannot be obtained the impact of the including the negative control should be assessed 

or the raw OD-value should be used if possible – with subsequent appropriate 

statistical corrections for those explanatory factors found significant. The normalised 

OD-values are corrected for a factor determined on the basis of the expected versus the 

observed OD-values for a defined positive reference standard. Using the normalised 

OD-values, information may be lost in the correcting-phase as they assume that the 

reference standards variation is fixed. Random variation is attributed to the test sample 

only. In Papers I, II and IV, ODC was used as the basis for the response variable in the 

statistical analyses. ODC can be used as an approximation of plate-to-plate level and 
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thus general systematic laboratory variation. However, it assumes that the negative 

control operates with only systematic effects and does not allow for random error of 

laboratory variability. In an optimised statistical setting, use of raw OD-values would 

therefore seem more appropriate. However, the statistical tools are not yet developed 

to handle all situations. Therefore, both the raw and corrected OD-values have been 

used in the present studies. The effect of using one or the other has not seemed to be 

important in a few pilot studies made (data not shown). In the papers presented in this 

thesis it was therefore decided to use the raw OD-values when deemed possible and 

then include correction for laboratory variation in the statistical models. As shown in 

Paper III, high between-run variability was seen. One explanation already given was 

lack of continuing experience by the laboratory technicians. Other explanations are 

influences of assay reagents, time and temperature as are usual causes of variation in 

ELISA-procedures (Jacobson, 1998). However, these effects are usually not seen when 

recalculating to normalised or corrected OD-values, but because we used raw OD-

values, the effect might seem more severe. Reporting the variation is rare, but 

Sweeney et al. (1995) also experienced significant variation, and dealing with the 

variation is thus necessary.   

 

Biological variability 

If the technical variability can be controlled or dealt with, we can focus on, from 

a veterinary point of view, the more interesting parts, namely the biological variation. 

The biological variation relates primarily to the pathogenesis. In a simplified scenario, 

the course of paratuberculosis could be: Infection – cell-mediated 

immunity/pathological lesions possible – humoral immunity/pathological lesions 

frequent/diarrhoea possible (for more details and other plausible scenarios, see Chapter 

1). With the long incubation period, the need for inclusion of aspects of the 

pathogenesis in the evaluation of test results is even more important than in many 

other test-disease relations. When evaluating antibody ELISAs, the immune-response 

part of the pathogenesis is the most important part. The ELISAs used in the present 

study measure both IgG1 and IgG2 (see Paper I). Thus, using a static view (at a specific 



 

 112 

point in time) of the immune-response, each ELISA (serum and milk) has two 

important cut-off points: 1) differentiation between no immune-response and cell-

mediated immunity (primarily IgG2); and 2) differentiation between cell-mediated 

immunity and humoral immunity (primarily IgG1). In the scenario where animals do 

not move between disease stages, the most widely used approach is to establish a case 

definition of paratuberculosis to address the performance of tests used for testing. A 

thorough post-mortem examination including histopathology or isolation of 

Mycobacterium avium subsp. paratuberculosis from tissues is usually considered the 

best evidence of infection. However, these methods may not detect all infections. It is 

difficult to determine ‘infection status’, if none of the methods used are 100% 

sensitive. Whittington et al. (1999) recently provided a good example of this based on 

infected sheep. Neither radiometric cultures from faeces and tissues nor histopathology 

were able to detect all infected animals. Results presented by Whitlock et al. (1996) 

indicate, that a similar situation can be expected with bovine paratuberculosis, though 

some differences might be expected due to differences in sheep and cattle strains of M. 

avium subsp. paratuberculosis. 

  

Exploring the ELISA based on known standards 

In Paper I, ‘paratuberculosis’ is defined as cows shedding of bacteria (faecal 

culture positive) for estimation of sensitivity of the ELISA. Cows from an area 

assumed to be free of paratuberculosis was used for estimation of the specificity of the 

ELISA. However, this case definition is rather narrow as we only achieve knowledge 

on the sensitivity of the ELISA when analysing samples from animals shedding 

bacteria. Shedding of bacteria does not necessarily provide knowledge on infection 

stage as shedding can be intermittent or even just be a case of bacteria passing through 

the gastro-intestinal tract of uninfected animals (Sweeney et al., 1992a). Determining 

faecal shedding of bacteria may be the aim of one decision-maker but many other 

goals of testing may be desired by a decision-maker rather than just establishing 

whether an animal is ‘shedding’ or not. Also, knowing that paratuberculosis is a 

chronic infection, we also have to address dynamic aspects of the disease. Other 
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drawbacks of the study presented in Paper I are that the study have fairly few study 

objects to conclude that the ELISA is the optimal test for paratuberculosis testing. 

However, the ROC-curves are both significantly greater than 0.5 indicating that faecal 

culture positivity and ELISA-positivity are correlated. The microbiological procedures 

performed may be to insensitive to detect all shedders, thus only heavy shedding is 

detected which can result in a serious selection bias towards the case definition 

‘shedding’. 

 

Exploring the ELISA without known standards 

Further exploration of the interpretation of the ELISA is required. First, a static 

population view is explored in Paper II. Basic issues of dynamic situations on cow and 

population level will be discussed later. In a situation, where a reference population 

cannot be obtained from the target population, and in a situation, where many disease 

stages are present, a latent class model seems appropriate in the exploratory phase 

rather than starting out with a case definition in order not to limit the exploration 

referencing known standards. Case definitions that are useful in practise may then be 

obtained subsequent to the analyses. In Paper II, a set of samples was collected to 

address evaluation of ELISAs and faecal culture from a latent class point of view. The 

intention of the sampling strategy was that the study objects were chosen to meet two 

requirements only: 1) they should be cows, i.e. have had their first calf; and 2) they 

should be from the target population. However, for sensitivity estimation, we need a 

sufficient number of true-positive animals sampled also. Therefore, additional 

strategies were also used to assure that the proportion of true-positive animals was 

increased without affecting the representativity of all stages of disease. Subsequent to 

the sampling, the resulting laboratory test results were analysed using a latent class 

approach, maximum likelihood estimation of sensitivity and specificity with the Hui-

and-Walter method (Hui and Walter, 1980). The method requires for two tests, that a 

minimum of two subpopulations with different prevalences exist. This requirement is 

due to the fact that 6 parameters need to be estimated. To achieve enough degrees of 

freedom for the estimation, two populations (or put differently, two 2x2-tables) are 
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needed. The Hui-and-Walter method is really developed for dichotomous tests. 

Because we are really interested in the test performance in the target population, which 

is dynamic, and because multiple stages of disease exist in this population, we have to 

evaluate the ELISAs at multiple cut-off values to dichotomise the ELISA. We 

dichotomised the faecal culture for reasons mentioned earlier. However, the ELISAs 

may still contain much more information in the ordinal or continuous form. In the 

situation where there is no unique separation of antibody positive and antibody 

negative study objects, we could use a combination of latent class approach and 

receiver operating characteristic (ROC) analysis. This would lead to an exploratory 

analysis of the capabilities of both the ELISAs and the faecal culture. In the study in 

Paper II, a number of cut-off values was chosen as a starting point (Table 5 in Paper 

II). All cows were included in each of these calculations. This approach optimises the 

use of the size of our sample at each cut-off value. However, when we use latent class 

models, we need more study objects than in situations with known case definitions 

(Toft et al., 2002). However, the resulting estimates on the same sample are 

theoretically better. The sample size influences the width of any credible confidence 

intervals calculated and also the power of the study. When the difference in the 

prevalences between the populations is small, the effect on the width is greater than 

with a larger difference. A difference in prevalence that is based on a systematic factor 

is required to divide the target population into subpopulations for the estimations. 

Even a random difference would suffice but it could potentially be too small resulting 

in wide confidence intervals. We chose three dividers: Herd-size, postal zip-code and 

veterinary practice code number. Our only reasons to believe that a systematic 

differences in prevalence were that: herd-size have previously been described as a 

factor that may affect the prevalence of infectious cattle diseases (Braun et al., 1990; 

Gottschau et al., 1990; Nylin et al., 2000); differences in the advisory services given to 

farmers could give rise to a difference in prevalence between herds from one or the 

other veterinary practice; differences could just be due to geographical or other 

random factors. The apparent small differences in the appearance of the ROC-curves 
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may be due to different differences in prevalence among the subpopulations and are 

thus an expression of the uncertainty of the latent class model used.   

In Paper II, the uncertainty associated with the parameter estimates are not given 

because it was not feasible at the time with the available computer programs and 

because the analyses should merely be seen as exploratory analyses of the performance 

of the tests. Calculation of the confidence intervals could have strengthened the study 

by illustrating the magnitude of the uncertainty associated with the maximum-

likelihood estimates. However, what was more intriguing to figure out was the shape 

of the resulting ROC curves. Why do they appear very steep initially and later have a 

rather long course with occasional small increases? The ROC curves in Paper I appear 

different. First, they are very steep. Then they assume a fairly flat course. A plausible 

explanation is that more of the cows included in Paper I have end-stage 

paratuberculosis. In Paper II, the diversity of study objects is greater. Hence, there 

seem to be some disease stage parameters that need to be addressed. With a chronic 

infection, time is a parameter that requires thorough consideration. In Paper IV, we 

study the effect of time based on cross-sectional data. The results indicate that cow-

time is an important factor in that both parity and stage of lactation are found 

significant factors that are worth considering as explanatory factors in the ROC 

analyses, either directly or by stratifying for those covariates. However, the computer 

programs to do so would require further development before doing it directly and 

simple stratification would make the number of study objects in each group too small 

for credible estimates. Thus, for the time being, the average estimates would have to 

suffice in the scenario of Paper II. It could be argued, that a major disadvantage of that 

study was that a definitive diagnosis for each cow could not be obtained. However, 

this seemed impossible considering the issues noted above and use of latent class 

models in such a situation would constitute a major motivation rather than a 

disadvantage. 
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Cow-time as a factor in ELISA results 

In Paper IV, the primary conclusions were that the ELISA results were affected 

significantly by parity and stage of lactation. Because we only had one sample per cow 

in this study as in all previous, it should be considered to describe only static 

situations. More information about disease dynamics could be obtained from a study 

including several samples collected over time from each cow such as done in Paper V. 

This could also provide an insight into the dynamics of the antibody pattern of both 

faecal culture positive and faecal culture negative cows. The resulting analyses in 

Paper V showed that huge variation in cow profiles exists. Both among the culture 

positive and the culture negative cows, many kinds of predicted antibody profiles are 

seen. Analyses of technical variation were included in the statistical models and may 

therefore be ruled out as causes of the variable antibody profiles. This finding strongly 

suggests that latent class models should be used for evaluations of diagnostic tests for 

paratuberculosis. It also questions the validity of the ELISA as a potential tool for use 

in control of paratuberculosis, especially if the results of the ELISA are judged on a 

dichotomous scale without inclusion of knowledge on time factors. In many instances, 

ELISA positive cows may turn out faecal culture negative even though the ELISA 

results are persistently fairly high, and this undermines the use of ELISA to confirm 

positive faecal culture results. One way of determining the usefulness of ELISA results 

in actions against paratuberculosis is by estimating production losses associated with 

high, medium and low ELISA-values. In a study by Kudahl et al. (unpublished data) 

estimated milk production losses 0-305 days-in-milk were 496 kg energy corrected 

milk (ECM) for primiparous cows, 1318 kg ECM in second parity and 625 kg ECM in 

higher parities for one unit of standardised OD-values (standardised by time-covariates 

as described in this thesis). Smaller production losses were seen with standardised OD-

values between 0 and 1 OD-units. 
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Population versus cow-level interpretation 

Returning to Table 5 in Paper II. What does it mean to display the data at 

multiple cut-off values and draw inferences at some of these? In Figure 4.1a, the 

theoretical distribution of OD-values for the 3 immuno-populations, i) non-infected; ii) 

infected with cell-mediated immunity; and iii) infected with humoral immunity are 

displayed for a target population including both infected and non-infected animals. 

The figure shows a nice separation of the immuno-populations with only little overlap. 

However, in a dynamic setting, some animals may move from one immuno-population 

to another when going from one disease stage to another. The separation between the 

populations is probably presented too simple because the time component in moving 

from one disease stage to another is not included. Instead, the situation may be like in 

Figure 4.1b with more blurry borders, thus making multiple cut-off points necessary in 

exploring potential use of antibody ELISAs for different purposes and scenarios and 

for cows with variable probabilities of testing positive for faecal shedding. As 

mentioned earlier, huge uncertainty must be expected for the point estimates. 

However, using the serological profile of a population as an indicator of which 

immuno-population a specific cow belongs to and subsequently drawing inferences on 

Figure 4.1. Theoretical distribution of OD-values for cows that are divided into distinct groups based
on their immune response. (a) shows the static situation where it is assumed that cows going from one
immuno-group to another are not present. (b) shows the dynamic situation which includes cows that
are  shifting immune-groups. In the non-infected cow, no immune-response is expected but the 
response in the ELISA depends on other factors. In the cow with the cell-mediated immune-response,
IgG2 is mainly responsible for the size of the OD-value. In the cow with a humoral immune-response,
the OD-value is primarily due to IgG1. 
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the performance of the faecal culture test does not yield surprising results compared to 

findings of others. For example, Whitlock et al. (1994) estimated a sensitivity of 29% 

for initial faecal culture for cows tested repeatedly in a four-year period. This could be 

compared to the sensitivities at cut-offs –0.087 (Se~20-25%) and –0.030 (Se~38%) 

from the present study, for cows expected to have a cell-mediated immune response. 

Higher sensitivity of faecal culture should be expected as disease progresses. Again, it 

should be emphasized that latent-class models are associated with greater uncertainty 

than models on cows with known disease status. It is also important to emphasize, that 

the ROC-curves based on the maximum-likelihood estimates are average population 

estimates. This means that the results from Paper II should be interpreted from a 

population point of view rather than an animal point of view. Therefore, the examples 

used above are to be interpreted for ‘average cows’, which do not exist in the real 

world. Using the average estimate assumes that the average cow is representative of a 

given immuno-population. And, it should be emphasised, that cows in our study were 

collected only once.  

Which of the cut-offs should be selected and how would the test be optimised in a 

practical setting? First, the biological variation described should be included in the 

optimising process. Subsequently, a number of other criteria are necessary to address 

when optimising the diagnostic value of a test. Among those are the test outcomes 

false-positive (FP) and false-negative (FN), and the prevalence in the target population 

(the latter usually being the herd of origin). In order to assess the diagnostic value of a 

test, considerations to the FP and FN proportions are essential, especially if a cut-off 

value needs to be established to dichotomise a test result (Greiner et al., 2000). A 

thorough ROC-analysis could deal with this trough optimising either the sensitivity, 

the specificity or both simultaneously, and then calculate the costs of FP and FN test 

results in each situation. The prevalence strongly affects the predictive value of the test 

result, as a positive test result is more likely to be a true-positive in a high-prevalence 

population, and a negative test result is more likely to be negative in a low prevalence 

population. Thus, knowledge on the prevalence and the FP and FN proportion is 

necessary to obtain. However, an even more important criterion for assessing the value 
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of a test is the aim of the testing. Because the Danish dairy industry and the individual 

farmers do not have a clear strategy on the testing for paratuberculosis, deciding 

whether emphasis should be on the FP proportion or the FN proportion is difficult to 

determine. Ultimately, a decision support system based on influence diagrams or 

related techniques would be required to determine consequences in a wider setting. A 

Bayesian approach with influence diagrams (Jensen, 1996) could be an option, but 

other simulation models could also address these issues. A false-positive could result 

in culling of valuable cows that are not easily replaced. However, in herds with many 

replacement heifers, this is not often a big problem. A false-negative could result in 

production loss and decreased animal welfare for the individual, risk of transmission 

of M. avium subsp. paratuberculosis to the herd-mates. The value of the latter is even 

more difficult to determine that just production losses. The weighting of false-positives 

relative to false-negatives should ideally change with prevalence.  

Based on our findings, it can be concluded that the ELISA contains more 

information interpreted on a continuous scale, alone or in combination with faecal 

culture. Neither test can effectively rule out the use of the other. But both the 

biological and the technical variability need to be handled cautiously in order to use 

the test results strategically and with an interpretation according to the purpose of the 

strategy. In the following sections, definitions of cow types and purposes will be 

suggested. The cow types and listing of purposes are proposals for cornerstones in the 

initiation of a future voluntary control and eradication program for paratuberculosis in 

Denmark.  

 

Definition of cow types 

Progression of paratuberculosis infection in cattle (and thus the pathogenesis) is 

pivotal for inference making on the available diagnostic tests. Knowledge on the 

performance of the diagnostic tests in relation to infection stage and disease 

development therefore must be considered important. However, the long incubation 

period and the uncertainty about whether an infection will lead to a “consequence” (as 

listed in Chapter 2) in all infected cows, require that an epidemiological description of 
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paratuberculosis be made prior to inference drawing. ‘Epidemiological’ in this context 

refers to coverage of all cows in the infected population rather than just those that will 

be visually evident at a certain time-point. Both ‘infected’ and ‘clinically diseased’ 

animals can give reactions in the diagnostic tests. But different situations may require 

differences in the test interpretation i.e. whether the test is used for diagnostic, 

prognostic or surveillance purposes. Therefore, defining cows based on the expected 

disease development and test outcomes can be beneficial. 

Thus, a description of the dynamic cow population would include three or four 

cow types (under the assumption that cure is not possible): 

a): Not infected. 

b): Infected, ‘controlling’ the infection (‘In-active infection’) 

c): Infected, initially ‘controlling’ the disease but losing control at a 

sudden point in time (‘Active infection’). 

d): Infected, not ‘controlling’ the infection (‘Active infection’).  

By ‘control of the infection’ is meant the successful arrest of progression of disease by 

achieved effective immunity of a dominating cell-mediated immune response. Types 

b) and d) can may appear as static infections whereas type a) and c) are dynamic. 

Under the assumption that cattle are infected in calfhood, only type c) needs to be 

considered dynamic. This assumption will be used in the following but the 

interpretation can be extended beyond this assumption. Thus, the static types can be 

generalised to three typologies: 1: Not infected; 2: In-active infection; 3: Active 

infection (Table 4.1). Both cows with Active as well as In-active infection may shed 

bacteria through different mechanisms. However, shedding is assumed much more 

prevalent in active infections, as described below. In Table 4.1, ‘controlling’ infection 

does not imply that shedding does not take place, simply that intermittent shedding is 

possible (Whitlock et al., 1994). 

Interpreting the tests from a static point of view basically means that cross-

sectional data can be used for the test evaluations. This has been done in Paper II 

where two ELISA tests and a test using faecal culture have been evaluated in a 

population that must be considered to include all possible stages of paratuberculosis 
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infection. Subsequent to the evaluations populations in which the tests can be used are 

defined. High antibody reactions, e.g. at a corrected optical density (ODC) of 0.600 

give a sensitivity of the faecal culture test of 0.65. Had the cut-off been lower, e.g. at 

an ODC=-0.030, the sensitivity would be only 0.38. The specificity remains 0.98 in 

both cases. However, from Paper IV we also know that the OD-values are strongly 

affected by parity and stage of lactation. Therefore, inclusion of these factors into the 

interpretation may strengthen the tests further, but how much has not been shown yet. 

This is left to future studies. 

Transferring the knowledge from Paper IV to Table 4.1 now makes sense. Non-

infected cows may be test-positive in some instances whether using faecal culture or 

ELISA as the testing tool. Cows with In-active ParaTB controlling the infection have a 

low level of antibodies. The concentration of antibodies depends on how the 

equilibrium has been shifted from cell-mediated immunity towards humoral immunity 

and the extent of IgG1 and IgG2 present. Shifts will usually only be expected to occur 

in cows that move from one disease stage to another. These shifts have currently been 

excluded from our explorations. However, some concentration mechanisms related to 

the milk-serum concentration of antibodies seem to exist. Generally, in the infected 

animal, there is some level of antibodies (minute amounts of one or both of IgG1 and 

IgG2). It is now assumed that this level on average is at ODC=–0.030 in Paper IV. 

Thus, for In-active ParaTB the sensitivity is 0.38. Cows with Active ParaTB generally 

are assumed to have higher levels of antibodies. This could be at ODC=0.600 as 

suggested in Paper IV. The sensitivity of the faecal culture test would then be 0.65 on 

average. That the sensitivity is based on average values can be seen from Paper V 

where some cows with persistently high ELISA levels are persistently faecal culture 

Table 4.1. Static paratuberculosis (ParaTB) cow types, with possible inclusion of 
dynamic elements of shedding.  
Non-Infected  Infected 
  ‘Controlling’ infection  Not ‘controlling’ infection 
  Non-shedding  Shedding  Non-shedding  Shedding 

1  2  3 
ParaTB free  In-active ParaTB  Active ParaTB 
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negative. The dependence of the ELISA on shedding of bacteria is not unequivocal. 

Paper IV shows that there is a relationship between the faecal culture test and the 

ELISA test. However, they are almost independent conditioned on disease, which can 

be seen from the small changes in the parameter estimates in Paper II. In Paper V it is 

seen that some cows that have been persistently antibody negative are faecal culture 

positive and vice versa. Probable explanations of this may be found in two of the 

assumptions made previously: 1) that cows are infected in calfhood and not as older 

animals; 2) that we are dealing with a static population. The first assumption is a usual 

generalisation of the transmission pattern (Chiodini et al., 1984; Sweeney, 1996). 

However, it has previously been shown that adults can be infected and develop 

pathological changes (Larsen et al., 1975) though some age resistance seems to occur 

(Hagan, 1938). No epidemiological reports on the extent and significance of adulthood 

infections relative to calfhood infections seem to exist. Still, in a heavily contaminated 

environment even older animals may be infected and subsequently shed bacteria which 

could lead to a positive test result in faecal culture with no concomitant antibody 

production due to a short incubation period. Shedding can also be due to passive 

transfer of Mycobacterium avium subsp. paratuberculosis through the intestinal 

system or false-positive results in the faecal culture test. The latter would usually be 

growth of non-Mycobacterium avium subsp. paratuberculosis-mycobacteria on the 

growth medium. Overall, the usually assumed obvious linkage between ELISA and 

faecal culture tests is not so obvious. This linkage results in the use of faecal culture to 

confirm ELISA results (Anon., 2002a; Anon., 2002b). The studies presented here links 

sensitivity of ELISA and faecal culture in cows in assumed early stages of disease, 

where both tests must be considered fairly insensitive. Thus, ELISA results may need 

to be interpreted on their own. 

Faecal culture negative cows that are antibody positive could be the result of 

false-negatives in the faecal culture test or false-positives in the ELISA test. Both are 

known to occur (e.g. in Paper V). One solution is by determining losses in production 

and include ‘production losses’ as a complementary test in a decision support system. 
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If the combination ELISA-test + production loss is important, the faecal culture status 

should be irrelevant. This matter goes beyond the scope of this thesis.  

Pursuing the dynamic aspect of paratuberculosis, Paper IV and V demonstrate not 

only a great variability in the ELISA response but also a very dynamic expression of 

the immune response. The status relative to shedding bacteria is of significant 

influence on the ELISA result. However, both in faecal culture negative and faecal 

culture positive cows, the variation is significant. Based on these findings, the findings 

in Paper II and the discussion above, the static cow types suggested above may be 

extended to dynamic cow types as illustrated in Figure 4.2. The lines represent each of 

the four different cow types a), b), c) and d) listed above and are hypothetical. 

However, they are intended to form the template for future interpretation on milk 

ELISA results as one branch in a testing scheme for paratuberculosis, the other branch 

being faecal culture testing. Cows that are shedding bacteria are not necessarily having 

‘Active ParaTB’. But they may transmit the infective agent to other susceptible 

Type a). Not infected

Type b). ‘In-active infection’. Infected 
with control of the infection 

Type c). ‘Active infection’. Infected 
– loosing control at 2nd calving 

Type d). ‘Active infection’. Infected without 
control at 1st calving 

Concentration of antibodies in milk 

1st calving 2nd calving 3rd calving

0

Fig. 4.2. Schematic representation of the theoretical dynamics of antibodies in cattle infected with
Mycobacterium avium subsp. paratuberculosis. The appearance of the lines presented are based on the piece-
wise linear regression models from Paper V, but smoothening of the lines would be required in a future
development of the shape of the lines. For further explanation, see text. 
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animals. Combining the information in Fig. 4.2 and Table 4.1, provides a lot of 

information to draw inferences on specific cows given the purpose of the testing is 

known. 

 

Purposes of testing 

Different people have different purposes of using the laboratory tests. There are 

three main purposes from a veterinary point of view: 

i) diagnosis (i.e. confirmation that Mycobacterium avium subsp. 

paratuberculosis is causing in clinical disease (production loss, diarrhoea, 

weight loss or other undesired conditions)), 

ii) prognosis (i.e. prediction of a test result on the probability that 

Mycobacterium avium subsp. paratuberculosis is implicated in “clinical 

disease”), 

iii) screening (i.e. systematic surveillance to ascertain evidence of presence of 

Mycobacterium avium subsp. paratuberculosis that may at some time cause 

clinical disease). 

The tests can thus be used for diagnostic or predictive (Choi, 1997) inference making 

but the sensitivity and specificity will be different depending on the purpose because 

the tests are not perfect. The sensitivity and specificity depend on stages of infection, 

which can partly (but not fully) be described by some animal factors.  

The purpose of the testing and the aim of the tester must be defined prior to 

applying the test. Main categories of aims may include:  

• reduction in prevalence of animals with clinical disease, 

• reduction in prevalence of infected animals, and 

• certification of freedom. 
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Table. 4.2. Proposed use of laboratory tests1 for achievement of 
superior sensitivity without compromising specificity to unacceptable 
levels in cows for detection of paratuberculosis in cows. The proposal 
also includes priority of the tests with 1 being the test used as the 
primary tool, eventually supported by the test with priority 2. 

 Prevalence Disease  
stage  Low – ‘Zero’ Mid High 

 1. ELISA 1. ELISA 1. ELISA 
Early 

  2. FC 2. FC 
 1. ELISA 1. ELISA 1. ELISA 

Mid 
  2. FC 1. FC 
 1. ELISA 1. FC 1. FC 

Late 
 2. FC 2. ELISA 2. ELISA 

1) ELISA = enzyme-linked immunosorbent assay for detection of antibodies in 
milk or serum; FC = culture for detection of M. avium subsp. paratuberculosis in 
faecal samples 

 

Combination of test purpose and aim of the tester should therefore be included in 

the planning of any control program for paratuberculosis. The two tests used in the 

present thesis, ELISA (both milk and serum) and culture of M. avium subsp. 

paratuberculosis from faecal samples, can be used for all test purposes but with 

variable predictive and diagnostic value. Table 4.2 provides a proposal for use of the 

tests used in this study for different situations in a voluntary control program on 

paratuberculosis. The table links prevalence and testing purpose. However, this 

linkage is actually through a combination of “Prevalence” and “Disease Stage”. In 

Table 4.3, examples of further elaboration of prevalence, disease stage and purposes 

are related to decision on test choice and priority. Other tests are not considered but the 

testing scheme can potentially be expanded to include these tests. Also, the testing 

scheme covers only adult animals. Because the two tests measure two very different 

and to some degree independent characteristics of the infection with M. avium subsp. 

paratuberculosis, they can be used either in serial testing or parallel testing with an 

almost full gain in specificity or sensitivity, respectively, without the loss of gain that 

can be expected from two tests that measure the same. However, the same feature (the 
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relative independence) makes them quite poor in confirming the diagnosis of the other 

as is recommended in some control programmes, e.g. in the USA (Anon., 2002a). This 

strategy mimics a desire to not find the disease, rather than leaving this decision to the 

decision maker ordering the test result. For prevalence reduction purposes, the strategy 

will be recommended in the initial phase, but a generalisation of this confirmation is 

not recommended. Unwanted consequences of such a generalisation can be seen for 

instance in the Dutch Johne’s disease certification program, where herds assumed free 

of infection are not truly free (Weber et al., 2002). 

Table 4.3. Examples of likely combinations of test choices and 
priority in a purpose-related testing scheme.  

Status in target herd 
and animals 

Purpose of strategy 

Prevalence Disease 
stage 

Test choice 
priority 

Reduce negative 
influence on 
individual animals 

High Early, 
mid, 
late 

1. Faecal culture
2. ELISA 

Reduce production 
loss affecting 
farmers economy 

Mid Mid, 
late 

1. ELISA 
2. Faecal culture

Reduce transmission Mid Late 1. Faecal culture
2. High ELISA 

 

The strategies in Table 4.3 may be considered confusing, because they require 

thorough considerations in every step of categorisation. The cows are classified 

according to some unknown (maybe estimated) factors of the surrounding 

environment. An alternative to this complicated model is the one in Table 4.4. A 

simpler presentation is provided for inclusion in material for end-users. But ultimately, 

the interpretation of the diagnostic tests needs to be stringent to type the cows. 
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Table 4.4. Relations between alternative cow typing and purpose of 

strategy. 

Purpose of strategy  Important cow types 

Reduce negative influence  

on individual animals 

 Active ParaTB  

Reduce production loss  

affecting farmers economy 

 Active ParaTB 

Certificate related (economy)  Not infected 

Reduce transmission  1. Active ParaTB 

2. (In-active ParaTB) 

 

Paratuberculosis is widespread in Denmark and fairly prevalent (Nielsen et al., 

2000). The chronicity of the disease and the relatively low sensitivity of the tests for 

predictive purposes render detection of presence of M. avium subsp. paratuberculosis 

challenging. At a certain point in time, it is no longer challenging, because the 

prevalence is so high that late stage paratuberculosis is visible frequently as diarrhoeic 

cows scattered among other cows with diarrhoea. A clear linkage exists between the 

laboratory tests and the severity of disease (Whitlock et al., 2000), which makes 

purpose testing the only solution for establishment of a sound paratuberculosis 

program. Strategies to control infection in infected herds can be established with the 

existing tests, but the tests are not the only tools in eradication of the disease. Effective 

control of M. avium subsp. paratuberculosis should still include basic changes in 

management factors to reduce transmission of bacteria between animals. The tests may 

serve as success monitoring factors, but not as disease and infection eradicators on 

their own. 
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Chapter 5. Conclusions and perspectives  

 

Testing alone cannot establish a control program, which will lead to successful 

control of paratuberculosis. Risk assessment at animal, herd, and regional level with 

subsequent changes in management procedures are required (Kennedy and Benedictus, 

2001). Laboratory tests may serve as part of the toolbox for changes in management 

procedures. However, for tests to be included in a control program, they also have to 

be cost-effective in relation to the purpose of the testing. 

In this thesis, an alternative to traditional test evaluation has been provided (Paper 

II). It is demonstrated how sensitivity and specificity of one test changes when the 

performances characteristics of the other test changes. Demonstrating bacterial 

shedding is easier in cows with high-level antibodies. It is concluded that the 

sensitivity of the faecal culture test depends on antibody level as a proxy of disease 

stage. 

It is demonstrated, that the antibody level of a cow is affected by cow 

characteristics such as parity and stage of lactation (Paper IV). It is demonstrated that 

both faecal culture positive and faecal culture negative cows can obtain high ELISA-

values (Paper V). It is demonstrated that low-level ELISA-values change with cow 

characteristics as do high-level values, but they apparently change differently for 

different cow-types (Paper V). The information obtained in the papers and the 

knowledge of the immunology and pathogenesis has been combined to create theoretic 

cow types in Chapter 4. The cow types are: I) Not infected; II) In-Active ParaTB; and 

III) Active ParaTB with extensions into a dynamic types as well. These cow types are 

suggested for use in a future Danish control program if such a program is established.  

The cost-effectiveness of the diagnostic tests has not been evaluated. However, 

on-going work evaluating the effect on production in the cow-types suggested will 

eventually support further development of test strategies. Simulation studies including 

the cow-types for different purposes of testing is required. 

The ELISA technique is not currently being used routinely for paratuberculosis 

testing in Denmark.  In other parts of the world, e.g. Australia, USA and The 



 

 130 

Netherlands, it is widely applied. However, in some instances, the reliability is 

questionable for single-animal test results and confirmatory tests are carried out on 

ELISA-positive animals (Anon., 2002a; b; Bulaga and Collins, 1999). Apparently, 

there is no reason for this in general, if the presence of the infection in a herd has once 

been established by a definitive test. Actually, confirmatory tests have such poor 

sensitivity in certain situations that such a strategy is not recommendable. 

The suggested cow-types can be incorporated in a voluntary control program in 

Denmark in that they should form the basis for strategies on culling animals and 

monitoring of individual herds. Purpose-based strategies need to be elaborated 

simultaneously in close co-operation with the herd veterinarian. With no legislation, 

the different aims (e.g. animal welfare, economic losses, increased food safety) of 

having one or more infected cows are so far the only motivators that should drive the 

farmers into controlling the infection. The strategies should be tried out in selected 

herds and succeed prior to establishment of regular control programmes. Also, further 

studies on the pathogenesis of paratuberculosis, for instance time-to-event analyses to 

determine relationships between bacterial shedding and cow-types or factors 

determining shift from inactive to active infection need to be conducted.  
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