Short time variation in daily shedding of contagious mastitis pathogens

CPH Cattle - Up-to-date with Cattle Research

Ph.D. student
Line Svennesen
Department of Large Animal Sciences
Section of Production and Health

Torben W. Bennedsgaard
Dyrlægerne Himmerland Kvæg, Aars

Karl Pedersen
Technical University of Denmark

Ilka C. Klaas
University of Copenhagen
Aim of the project

- To make recommendations on relevant milk sampling for detection of *Staphylococcus aureus* and *Streptococcus agalactiae* (B-streptococci)
- Investigate & understand shedding patterns
- Investigate the relationship between
 - Bacterial Culture (BC)
 - Polymerase Chain Reaction (PCR)
 - Somatic Cell Count (SCC)

My Ph.D. project: Characteristics of *Staph. aureus* and *Strep. agalactiae* for improved mastitis diagnosis and control

STOPMAST: Funded by the Danish milk levy foundation, participants from DTU, AU and SEGES
Background

- Subclinical mastitis
- Diagnostic tool for control or eradication
- Culture - higher sensitivity with PCR

Staph. aureus
- Widespread mastitis pathogen
- Cyclic shedding patterns expected (Studer et al., 2008, Sears et al., 1990)

Strep. agalactiae
- Increasing herd prevalence in DK
- Re-emergence in Nordic countries
- Single study (Thieme und Haasmann, 1978)
Materials and Methods

- 2 herds with repeatedly PCR positive bulk tank (Ct<30)

- Screening on cow level - PCR test foremilk samples all cows (n=589)

- Positive cows: PCR test on quarter milk samples
 - *Staph. aureus* (Ct≤37)
 - *Strep. agalactiae* (Ct<40)

- Positive quarters (n=43) followed for 21 days
- Quarters negative ‘first’ 8 days omitted (n=8)
Materials and Methods

- 35 quarters
 - 21 *Staph. aureus* quarters
 - 14 *Strep. agalactiae* quarters
- 1 daily milking in 21 days
- Aseptic foremilk samples:
 - Routine preparation by staff
 - New gloves between cows
 - Cotton with 70% alcohol
 - Discard 3 strips
 - 50 mL
Materials and Methods

- **SCC:**
 - Bronopol preserved fresh sample

- **PCR:**
 - Bronopol preserved fresh sample
 - Non-preserved frozen sample
 - Mastit4BD PCR kit (DNA Diagnostic)
 - *S. aureus*, *S. agalactiae*, *S. uberis*, *S. dysgalactiae*, CNS, *Myc. bovis*, *Myc. sup.*, Beta-lactamase

- **BC:**
 - Non-preserved fresh sample
 - 10uL (loop), Esculin blood agar
 - Approximate CFU < 300/10uL after 24 hours
Preliminary Results...
Consistent shedding
False negative?
17/21 days positive

Low shedding
Variation within a strep. agalactiae positive quarter through 21 days

K0_NR=2962 KIRTEL=HF

Day

Ct-value

 SCC and CFU

SCCx1000/mL

* CFU is approximate counts up to 300

New infection?
Summary...

Great variation in SCC, CFU and Ct-values between and within quarters over 21 days

Inconsistent shedding of both pathogens

Better chance to find *Strep. agalactiae* with PCR

Staph. aureus:
- Mean PCR positive days = 18 of 21
- Mean BC positive days = 19 of 21

Strep. agalactiae:
- Mean PCR positive days = 15 of 21
- Mean BC positive days = 10 of 21

Further analysis 2017
- Tendencies in shedding patterns
- Diagnostic test evaluation/test properties
Take home message

A single negative sample is no warranty of freedom from udder infections with Staph. aureus and Strep. agalactiae

- False negatives (test sensitivity)
- Low shedding (repeated testing or test sensitivity)
- Biological inconsistent shedding (repeated sampling)