Anthelmintic resistance in cattle – status and new alternatives for control

Stig M. Thamsborg,
Matt Denwood (University of Copenhagen),
and Heidi L. Enemark (Norwegian Veterinary Institute)
Contributions from:

DTU-VET
Miguel Peña-Espinoza (Ph.D.) (2012-16)
Ulrik Boas
Heidi L. Enemark

KU-SUND
Olivier Desrues (Ph.D.) (KU-SUND) (2012-16)
Andrew R. Williams
Tina V. A. Hansen
Matt Denwood
Henrik Toft Simonsen
Stig M. Thamsborg

University of Reading
Irene Mueller-Harvey
Outline

1. Background
2. Anthelmintic resistance
3. Feeding: esparsette & condensed tannins
4. Feeding: chicory & sesquiterpenlactones
5. Conclusions & perspectives
Gastrointestinal nematodes (GIN) (løbetarmorm)

- Most pathogenic and prevalent species in cattle:
 - *Ostertagia ostertagi* (abomasum)
 - *Cooperia oncophora* (small intestine)

Life cycle of GIN
Control of gastrointestinal nematodes

Use of anthelmintic drugs in Danish cattle 2010-2014:

- The heavy reliance on drugs increases the risk of anthelmintic drug resistance, particularly ivermectins
- Increasing problems worldwide in cattle

Source: VetStat
Control of gastrointestinal nematodes

Objectives:
- examine selected Danish cattle farms for anthelmintic resistance (AR) against ivermectin
- investigate alternative options for control by means of feeding specialized (bioactive) crops
Faecal egg count reduction test (FECRT)

- N=120 first-grazing season calves (6 farms)
- Animals stratified by egg count and randomly allocated into:
 - **Treatment group (IVM):** 0.2 mg IVM s.c./kg LW (n= 10/farm)
 - **Control group (CTL):** Untreated (n=10/farm)
- Egg counts at day of treatment (D0) and 14 days post treatment (D14)
 - **FECR% (arit. mean) = 100 \times (1 – [IVM D14/IVM D0]); 95% C.I.**
 - **Markov chain Monte Carlo (MCMC) model = 95% C.I.**
- **Interpretation:**
 i) Efficacious, when mean FECR% and upper CI ≥ 95% and lower CI ≥ 90%;
 ii) Reduced efficacy (AR), when mean FECR% and upper CI < 95% and lower CI < 90%;
 iii) Inconclusive, when none of the above conditions were met.

(Coles et al. 1992; Denwood et al. 2010; Lyndal-Murphy et al 2014)
FECRT: results from six Danish cattle farms

<table>
<thead>
<tr>
<th></th>
<th>Farm #1 (Beef, conv.)</th>
<th>Farm #2 (Dairy, org.)</th>
<th>Farm #3 (Dairy, conv.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>IVM</td>
<td>CTL</td>
<td>IVM</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>WAAVP</td>
<td>86<sup>R</sup> [66–94]</td>
<td>82<sup>R</sup> [47–94]</td>
<td>92<sup>i</sup> [30–99]</td>
</tr>
<tr>
<td>MCMC</td>
<td>87<sup>R</sup> [81–93]</td>
<td>83<sup>R</sup> [72–92]</td>
<td>90<sup>i</sup> [62–98]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Farm #4 (Dairy, org.)</th>
<th>Farm #5 (Beef, org.)</th>
<th>Farm #6 (Dairy, org.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>IVM</td>
<td>CTL</td>
<td>IVM</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>WAAVP</td>
<td>86<sup>R</sup> [67–94]</td>
<td>94<sup>i</sup> [87–97]</td>
<td>83<sup>i</sup> [-50–98]</td>
</tr>
<tr>
<td>MCMC</td>
<td>81<sup>R</sup> [50–94]</td>
<td>92<sup>i</sup> [84–98]</td>
<td>81<sup>i</sup> [25–99]</td>
</tr>
</tbody>
</table>

- predominantly *Cooperia* post-treatment
Nutritional manipulation/bioactive feeds

- Bioactive crops may be incorporated in the feed on stable or in the pasture

- So-called bioactive crops contain a huge range of **Plant Secondary Metabolites (PSM):** alkaloids, phenolics (tannins), terpenoids etc.

- Some used in traditional, ethnoveterinary medicine

- Scientific validation needed (Hoste et al, 2015)

An example:
Condensed tannins are found in
- Sainfoin (esparsette) (1-8%)
- Birdsfoot trefoil (kællingetand)
- Several berries
- Red wine!!

![Illustration of Procyanidin (PC) and Prodelphinidin (PD) structures]
In vitro anti-parasitic effects of extracts

Larval Feeding Inhibition Assay LFIA (free-living stage)

L1
E. coli labelled with FITC

- incubation 2 hours
- incubation 18 hours

Fed larvae
Unfed larvae

Chicory cv. Spadona rich in **sesquiterpen-lactones (SL)**

Chicory cv. Puna II

- similar high efficacy with sainfoin extracts
Sainfoin (esparsette): *in vivo* study

SAINFOIN
- Dehydrated pelleted sainfoin (Perly)

ANIMALS
- 2.5–4.5 month-old Jersey calves

GROUPS AND DIETS
- **Control group** (*n*=6)
 - Concentrate (50-65%) + ryegrass-clover hay
- **Sainfoin Group** (*n*=9)
 - Pellets sainfoin (90%) + ryegrass-clover hay

TIMELINE
- 16 days: isoprotein-energy diets
- 42 days: Infection
 - 10,000 L3 *O. ostertagi*
 - 66,000 L3 *C. oncophora*
- Faecal Egg Counts (FEC) (3× week)
- Adult worms
 - (burden; sex ratio; fecundity)
Sainfoin: *in vivo* study - results

Effect on adult worms but no effect on egg counts:

<table>
<thead>
<tr>
<th>Adult nematodes</th>
<th>Group</th>
<th>Worm burden</th>
<th>♂ (%)</th>
<th>♀ fecundity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostertagia ostertagi</td>
<td>CO</td>
<td>2,715 ± 894</td>
<td>44 ± 6</td>
<td>41 ± 09</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>1,331 ± 947*</td>
<td>42 ± 7</td>
<td>43 ± 12</td>
</tr>
<tr>
<td>Cooperia oncophora</td>
<td>CO</td>
<td>22,447 ± 17,639</td>
<td>34 ± 15</td>
<td>53 ± 45</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>19,664 ± 22,496</td>
<td>29 ± 23</td>
<td>40 ± 36</td>
</tr>
</tbody>
</table>

Scanning electron microscopy to visualise cuticle damage on adults of *O. ostertag*
Sainfoin: analysis of Condensed Tannins (CT) in different gut sections

CT content (% of dry matter)
Thiolysis coupled with LC-MS (n=8)

- Little or no absorption of CT
- Accessibility of CT important for anthelmintic activity
- Thiolysis method good indicator of anthelmintic activity

RU: rumen, AB: abomasum
SI: small intestine, FE: faeces

RU: rumen, AB: abomasum
SI: small intestine, FE: faeces

-50%

O. ostertagi

No effect
C. oncophora
Chicory (SL-rich): grazing study - results

N = 20 calves
Chicory: 90% of pasture DM (11% CP)
Ctrl: clover grass (16% CP)

- no effect on *Cooperia* in the small intestine!

Geo mean FEC adjusted for faecal DM (FECDM) in chicory and control groups (95% CI)

Mean *O. ostertagi* adult counts in chicory and control groups (95% CI)
Conclusions & Perspectives

- AR present in Danish cattle farms (3 out of 6 farms)
 ⇒ so far mainly of academic interest
 ⇒ no reported drug failures
 ⇒ implications for control?

- Sainfoin and chicory are potent against *O. ostertagi* in cattle (*in vivo*)
 ⇒ *Ostertagia* more pathogenic and found in older animals

- How to tackle the lack of *in vivo* effect against *Cooperia*?

- Both content and type/structure of CT and SL matter for AH activity
 ⇒ Selection of right species/cultivar of crop or improved breeding

- Mechanisms of action remain to be elucidated
 ⇒ New FTP project for CHICORY and SL just initiated (Plants & Parasites)
Acknowledgements of funding bodies:

CARES: Coping with Anthelmintic RESistance in ruminants

Ministry of Food, Agriculture and Fisheries of Denmark